2023-04-25 00:48:44 +00:00
|
|
|
from typing import Literal, Optional, Union
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
|
|
from invokeai.app.invocations.util.choose_model import choose_model
|
|
|
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
|
|
|
|
|
|
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
|
|
|
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
|
|
|
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
|
|
|
|
|
|
|
|
from compel import Compel
|
|
|
|
from compel.prompt_parser import (
|
|
|
|
Blend,
|
|
|
|
CrossAttentionControlSubstitute,
|
|
|
|
FlattenedPrompt,
|
|
|
|
Fragment,
|
|
|
|
)
|
|
|
|
|
|
|
|
from invokeai.backend.globals import Globals
|
|
|
|
|
|
|
|
|
|
|
|
class ConditioningField(BaseModel):
|
|
|
|
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
|
|
|
|
class Config:
|
|
|
|
schema_extra = {"required": ["conditioning_name"]}
|
|
|
|
|
|
|
|
|
|
|
|
class CompelOutput(BaseInvocationOutput):
|
|
|
|
"""Compel parser output"""
|
|
|
|
|
|
|
|
#fmt: off
|
|
|
|
type: Literal["compel_output"] = "compel_output"
|
|
|
|
# name + loras -> pipeline + loras
|
|
|
|
# model: ModelField = Field(default=None, description="Model")
|
|
|
|
# src? + loras -> tokenizer + text_encoder + loras
|
|
|
|
# clip: ClipField = Field(default=None, description="Text encoder(clip)")
|
2023-05-05 12:47:51 +00:00
|
|
|
positive: ConditioningField = Field(default=None, description="Positive conditioning")
|
|
|
|
negative: ConditioningField = Field(default=None, description="Negative conditioning")
|
2023-04-25 00:48:44 +00:00
|
|
|
#fmt: on
|
|
|
|
|
|
|
|
|
|
|
|
class CompelInvocation(BaseInvocation):
|
|
|
|
|
|
|
|
type: Literal["compel"] = "compel"
|
|
|
|
|
|
|
|
positive_prompt: str = Field(default="", description="Positive prompt")
|
|
|
|
negative_prompt: str = Field(default="", description="Negative prompt")
|
|
|
|
|
|
|
|
model: str = Field(default="", description="Model to use")
|
|
|
|
truncate_long_prompts: bool = Field(default=False, description="Whether or not to truncate long prompt to 77 tokens")
|
|
|
|
|
|
|
|
# name + loras -> pipeline + loras
|
|
|
|
# model: ModelField = Field(default=None, description="Model to use")
|
|
|
|
# src? + loras -> tokenizer + text_encoder + loras
|
|
|
|
# clip: ClipField = Field(default=None, description="Text encoder(clip) to use")
|
|
|
|
|
|
|
|
# Schema customisation
|
|
|
|
class Config(InvocationConfig):
|
|
|
|
schema_extra = {
|
|
|
|
"ui": {
|
|
|
|
"tags": ["latents", "noise"],
|
|
|
|
"type_hints": {
|
|
|
|
"model": "model"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
}
|
|
|
|
|
|
|
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
|
|
|
|
|
|
|
# TODO: load without model
|
|
|
|
model = choose_model(context.services.model_manager, self.model)
|
|
|
|
pipeline = model["model"]
|
|
|
|
tokenizer = pipeline.tokenizer
|
|
|
|
text_encoder = pipeline.text_encoder
|
|
|
|
|
|
|
|
# TODO: global? input?
|
|
|
|
#use_full_precision = precision == "float32" or precision == "autocast"
|
2023-04-25 09:53:13 +00:00
|
|
|
#use_full_precision = False
|
|
|
|
|
|
|
|
# TODO: redo TI when separate model loding implemented
|
|
|
|
#textual_inversion_manager = TextualInversionManager(
|
|
|
|
# tokenizer=tokenizer,
|
|
|
|
# text_encoder=text_encoder,
|
|
|
|
# full_precision=use_full_precision,
|
|
|
|
#)
|
|
|
|
|
|
|
|
def load_huggingface_concepts(concepts: list[str]):
|
|
|
|
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
|
|
|
|
|
|
|
|
# apply the concepts library to the prompt
|
|
|
|
positive_prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
|
|
|
|
self.positive_prompt,
|
|
|
|
lambda concepts: load_huggingface_concepts(concepts),
|
|
|
|
pipeline.textual_inversion_manager.get_all_trigger_strings(),
|
|
|
|
)
|
2023-04-25 00:48:44 +00:00
|
|
|
|
2023-04-25 09:53:13 +00:00
|
|
|
negative_prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
|
|
|
|
self.negative_prompt,
|
|
|
|
lambda concepts: load_huggingface_concepts(concepts),
|
|
|
|
pipeline.textual_inversion_manager.get_all_trigger_strings(),
|
2023-04-25 00:48:44 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# lazy-load any deferred textual inversions.
|
|
|
|
# this might take a couple of seconds the first time a textual inversion is used.
|
2023-04-25 09:53:13 +00:00
|
|
|
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
|
|
|
|
positive_prompt_str + "[" + negative_prompt_str + "]"
|
2023-04-25 00:48:44 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
compel = Compel(
|
|
|
|
tokenizer=tokenizer,
|
|
|
|
text_encoder=text_encoder,
|
2023-04-25 09:53:13 +00:00
|
|
|
textual_inversion_manager=pipeline.textual_inversion_manager,
|
2023-04-25 00:48:44 +00:00
|
|
|
dtype_for_device_getter=torch_dtype,
|
|
|
|
truncate_long_prompts=self.truncate_long_prompts,
|
|
|
|
)
|
|
|
|
|
|
|
|
# TODO: support legacy blend?
|
|
|
|
|
2023-04-25 09:53:13 +00:00
|
|
|
positive_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(positive_prompt_str)
|
|
|
|
negative_prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(negative_prompt_str)
|
2023-04-25 00:48:44 +00:00
|
|
|
|
2023-04-25 01:29:17 +00:00
|
|
|
if getattr(Globals, "log_tokenization", False):
|
2023-04-25 00:48:44 +00:00
|
|
|
log_tokenization(positive_prompt, negative_prompt, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
# TODO: add lora(with model and clip field types)
|
2023-04-25 09:53:13 +00:00
|
|
|
c, options = compel.build_conditioning_tensor_for_prompt_object(positive_prompt)
|
|
|
|
uc, _ = compel.build_conditioning_tensor_for_prompt_object(negative_prompt)
|
2023-04-25 00:48:44 +00:00
|
|
|
|
|
|
|
if not self.truncate_long_prompts:
|
|
|
|
[c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
|
|
|
|
|
2023-04-25 09:53:13 +00:00
|
|
|
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
2023-04-25 00:48:44 +00:00
|
|
|
tokens_count_including_eos_bos=get_max_token_count(tokenizer, positive_prompt),
|
2023-04-25 09:53:13 +00:00
|
|
|
cross_attention_control_args=options.get("cross_attention_control", None),
|
2023-04-25 00:48:44 +00:00
|
|
|
)
|
|
|
|
|
2023-05-05 12:47:51 +00:00
|
|
|
name_prefix = f'{context.graph_execution_state_id}__{self.id}'
|
|
|
|
name_positive = f"{name_prefix}_positive"
|
|
|
|
name_negative = f"{name_prefix}_negative"
|
2023-04-25 00:48:44 +00:00
|
|
|
|
|
|
|
# TODO: hacky but works ;D maybe rename latents somehow?
|
2023-05-05 12:47:51 +00:00
|
|
|
context.services.latents.set(name_positive, (c, ec))
|
|
|
|
context.services.latents.set(name_negative, (uc, None))
|
2023-04-25 00:48:44 +00:00
|
|
|
|
|
|
|
return CompelOutput(
|
2023-05-05 12:47:51 +00:00
|
|
|
positive=ConditioningField(
|
|
|
|
conditioning_name=name_positive,
|
|
|
|
),
|
|
|
|
negative=ConditioningField(
|
|
|
|
conditioning_name=name_negative,
|
2023-04-25 00:48:44 +00:00
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_max_token_count(
|
|
|
|
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
|
|
|
|
) -> int:
|
|
|
|
if type(prompt) is Blend:
|
|
|
|
blend: Blend = prompt
|
|
|
|
return max(
|
|
|
|
[
|
|
|
|
get_max_token_count(tokenizer, c, truncate_if_too_long)
|
|
|
|
for c in blend.prompts
|
|
|
|
]
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
return len(
|
|
|
|
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def get_tokens_for_prompt_object(
|
|
|
|
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
|
|
|
|
) -> [str]:
|
|
|
|
if type(parsed_prompt) is Blend:
|
|
|
|
raise ValueError(
|
|
|
|
"Blend is not supported here - you need to get tokens for each of its .children"
|
|
|
|
)
|
|
|
|
|
|
|
|
text_fragments = [
|
|
|
|
x.text
|
|
|
|
if type(x) is Fragment
|
|
|
|
else (
|
|
|
|
" ".join([f.text for f in x.original])
|
|
|
|
if type(x) is CrossAttentionControlSubstitute
|
|
|
|
else str(x)
|
|
|
|
)
|
|
|
|
for x in parsed_prompt.children
|
|
|
|
]
|
|
|
|
text = " ".join(text_fragments)
|
|
|
|
tokens = tokenizer.tokenize(text)
|
|
|
|
if truncate_if_too_long:
|
|
|
|
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
|
|
|
|
tokens = tokens[0:max_tokens_length]
|
|
|
|
return tokens
|
|
|
|
|
|
|
|
|
|
|
|
def log_tokenization(
|
|
|
|
positive_prompt: Union[Blend, FlattenedPrompt],
|
|
|
|
negative_prompt: Union[Blend, FlattenedPrompt],
|
|
|
|
tokenizer,
|
|
|
|
):
|
|
|
|
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}")
|
|
|
|
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
|
|
|
|
|
|
|
|
log_tokenization_for_prompt_object(positive_prompt, tokenizer)
|
|
|
|
log_tokenization_for_prompt_object(
|
|
|
|
negative_prompt, tokenizer, display_label_prefix="(negative prompt)"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def log_tokenization_for_prompt_object(
|
|
|
|
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
|
|
|
|
):
|
|
|
|
display_label_prefix = display_label_prefix or ""
|
|
|
|
if type(p) is Blend:
|
|
|
|
blend: Blend = p
|
|
|
|
for i, c in enumerate(blend.prompts):
|
|
|
|
log_tokenization_for_prompt_object(
|
|
|
|
c,
|
|
|
|
tokenizer,
|
|
|
|
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
|
|
|
|
)
|
|
|
|
elif type(p) is FlattenedPrompt:
|
|
|
|
flattened_prompt: FlattenedPrompt = p
|
|
|
|
if flattened_prompt.wants_cross_attention_control:
|
|
|
|
original_fragments = []
|
|
|
|
edited_fragments = []
|
|
|
|
for f in flattened_prompt.children:
|
|
|
|
if type(f) is CrossAttentionControlSubstitute:
|
|
|
|
original_fragments += f.original
|
|
|
|
edited_fragments += f.edited
|
|
|
|
else:
|
|
|
|
original_fragments.append(f)
|
|
|
|
edited_fragments.append(f)
|
|
|
|
|
|
|
|
original_text = " ".join([x.text for x in original_fragments])
|
|
|
|
log_tokenization_for_text(
|
|
|
|
original_text,
|
|
|
|
tokenizer,
|
|
|
|
display_label=f"{display_label_prefix}(.swap originals)",
|
|
|
|
)
|
|
|
|
edited_text = " ".join([x.text for x in edited_fragments])
|
|
|
|
log_tokenization_for_text(
|
|
|
|
edited_text,
|
|
|
|
tokenizer,
|
|
|
|
display_label=f"{display_label_prefix}(.swap replacements)",
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
text = " ".join([x.text for x in flattened_prompt.children])
|
|
|
|
log_tokenization_for_text(
|
|
|
|
text, tokenizer, display_label=display_label_prefix
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
|
|
|
|
"""shows how the prompt is tokenized
|
|
|
|
# usually tokens have '</w>' to indicate end-of-word,
|
|
|
|
# but for readability it has been replaced with ' '
|
|
|
|
"""
|
|
|
|
tokens = tokenizer.tokenize(text)
|
|
|
|
tokenized = ""
|
|
|
|
discarded = ""
|
|
|
|
usedTokens = 0
|
|
|
|
totalTokens = len(tokens)
|
|
|
|
|
|
|
|
for i in range(0, totalTokens):
|
|
|
|
token = tokens[i].replace("</w>", " ")
|
|
|
|
# alternate color
|
|
|
|
s = (usedTokens % 6) + 1
|
|
|
|
if truncate_if_too_long and i >= tokenizer.model_max_length:
|
|
|
|
discarded = discarded + f"\x1b[0;3{s};40m{token}"
|
|
|
|
else:
|
|
|
|
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
|
|
|
|
usedTokens += 1
|
|
|
|
|
|
|
|
if usedTokens > 0:
|
|
|
|
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
|
|
|
print(f"{tokenized}\x1b[0m")
|
|
|
|
|
|
|
|
if discarded != "":
|
|
|
|
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
|
|
|
print(f"{discarded}\x1b[0m")
|