InvokeAI/invokeai/backend/stable_diffusion/image_degradation/bsrgan.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

795 lines
26 KiB
Python
Raw Normal View History

2021-12-21 02:23:41 +00:00
# -*- coding: utf-8 -*-
"""
# --------------------------------------------
# Super-Resolution
# --------------------------------------------
#
# Kai Zhang (cskaizhang@gmail.com)
# https://github.com/cszn
# From 2019/03--2021/08
# --------------------------------------------
"""
import random
2023-03-03 06:02:00 +00:00
from functools import partial
import albumentations
import cv2
import ldm.modules.image_degradation.utils_image as util
import numpy as np
2021-12-21 02:23:41 +00:00
import scipy
import scipy.stats as ss
2023-03-03 06:02:00 +00:00
import torch
from scipy import ndimage
2021-12-21 02:23:41 +00:00
from scipy.interpolate import interp2d
from scipy.linalg import orth
def modcrop_np(img, sf):
"""
2021-12-21 02:23:41 +00:00
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
"""
2021-12-21 02:23:41 +00:00
w, h = img.shape[:2]
im = np.copy(img)
return im[: w - w % sf, : h - h % sf, ...]
2021-12-21 02:23:41 +00:00
"""
# --------------------------------------------
# anisotropic Gaussian kernels
# --------------------------------------------
"""
def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
2023-03-03 06:02:00 +00:00
big_k[2 * r : 2 * r + k_size, 2 * c : 2 * c + k_size] += k[r, c] * k
2021-12-21 02:23:41 +00:00
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum()
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
"""generate an anisotropic Gaussian kernel
2021-12-21 02:23:41 +00:00
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(
2023-03-03 06:02:00 +00:00
np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]),
np.array([1.0, 0.0]),
)
2021-12-21 02:23:41 +00:00
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k
def gm_blur_kernel(mean, cov, size=15):
center = size / 2.0 + 0.5
k = np.zeros([size, size])
for y in range(size):
for x in range(size):
cy = y - center + 1
cx = x - center + 1
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
k = k / np.sum(k)
return k
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x
def blur(x, k):
"""
2021-12-21 02:23:41 +00:00
x: image, NxcxHxW
k: kernel, Nx1xhxw
"""
2021-12-21 02:23:41 +00:00
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
2023-03-03 06:02:00 +00:00
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode="replicate")
2021-12-21 02:23:41 +00:00
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
2023-03-03 06:02:00 +00:00
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
2021-12-21 02:23:41 +00:00
x = x.view(n, c, x.shape[2], x.shape[3])
return x
def gen_kernel(
k_size=np.array([15, 15]),
scale_factor=np.array([4, 4]),
min_var=0.6,
max_var=10.0,
noise_level=0,
):
""" "
2021-12-21 02:23:41 +00:00
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
# Kai Zhang
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
# max_var = 2.5 * sf
"""
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
theta = np.random.rand() * np.pi # random theta
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
# Set COV matrix using Lambdas and Theta
LAMBDA = np.diag([lambda_1, lambda_2])
2023-03-03 06:02:00 +00:00
Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
2021-12-21 02:23:41 +00:00
SIGMA = Q @ LAMBDA @ Q.T
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
# Set expectation position (shifting kernel for aligned image)
2023-03-03 06:02:00 +00:00
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
2021-12-21 02:23:41 +00:00
MU = MU[None, None, :, None]
# Create meshgrid for Gaussian
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
Z = np.stack([X, Y], 2)[:, :, :, None]
# Calcualte Gaussian for every pixel of the kernel
ZZ = Z - MU
ZZ_t = ZZ.transpose(0, 1, 3, 2)
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
# shift the kernel so it will be centered
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
# Normalize the kernel and return
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
kernel = raw_kernel / np.sum(raw_kernel)
return kernel
def fspecial_gaussian(hsize, sigma):
hsize = [hsize, hsize]
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
std = sigma
2023-03-03 06:02:00 +00:00
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
2021-12-21 02:23:41 +00:00
arg = -(x * x + y * y) / (2 * std * std)
h = np.exp(arg)
h[h < scipy.finfo(float).eps * h.max()] = 0
sumh = h.sum()
if sumh != 0:
h = h / sumh
return h
def fspecial_laplacian(alpha):
alpha = max([0, min([alpha, 1])])
h1 = alpha / (alpha + 1)
h2 = (1 - alpha) / (alpha + 1)
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
h = np.array(h)
return h
def fspecial(filter_type, *args, **kwargs):
"""
2021-12-21 02:23:41 +00:00
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
"""
2023-03-03 06:02:00 +00:00
if filter_type == "gaussian":
2021-12-21 02:23:41 +00:00
return fspecial_gaussian(*args, **kwargs)
2023-03-03 06:02:00 +00:00
if filter_type == "laplacian":
2021-12-21 02:23:41 +00:00
return fspecial_laplacian(*args, **kwargs)
"""
# --------------------------------------------
# degradation models
# --------------------------------------------
"""
def bicubic_degradation(x, sf=3):
"""
2021-12-21 02:23:41 +00:00
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
"""
2021-12-21 02:23:41 +00:00
x = util.imresize_np(x, scale=1 / sf)
return x
def srmd_degradation(x, k, sf=3):
"""blur + bicubic downsampling
2021-12-21 02:23:41 +00:00
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
"""
2023-03-03 06:02:00 +00:00
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap") # 'nearest' | 'mirror'
2021-12-21 02:23:41 +00:00
x = bicubic_degradation(x, sf=sf)
return x
def dpsr_degradation(x, k, sf=3):
"""bicubic downsampling + blur
2021-12-21 02:23:41 +00:00
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
"""
2021-12-21 02:23:41 +00:00
x = bicubic_degradation(x, sf=sf)
2023-03-03 06:02:00 +00:00
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap")
2021-12-21 02:23:41 +00:00
return x
def classical_degradation(x, k, sf=3):
"""blur + downsampling
2021-12-21 02:23:41 +00:00
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
"""
2023-03-03 06:02:00 +00:00
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode="wrap")
2021-12-21 02:23:41 +00:00
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...]
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
"""USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int):
"""
if radius % 2 == 0:
radius += 1
blur = cv2.GaussianBlur(img, (radius, radius), 0)
residual = img - blur
mask = np.abs(residual) * 255 > threshold
2023-03-03 06:02:00 +00:00
mask = mask.astype("float32")
2021-12-21 02:23:41 +00:00
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
K = img + weight * residual
K = np.clip(K, 0, 1)
return soft_mask * K + (1 - soft_mask) * img
def add_blur(img, sf=4):
wd2 = 4.0 + sf
wd = 2.0 + 0.2 * sf
if random.random() < 0.5:
l1 = wd2 * random.random()
l2 = wd2 * random.random()
k = anisotropic_Gaussian(
ksize=2 * random.randint(2, 11) + 3,
theta=random.random() * np.pi,
l1=l1,
l2=l2,
)
2021-12-21 02:23:41 +00:00
else:
2023-03-03 06:02:00 +00:00
k = fspecial("gaussian", 2 * random.randint(2, 11) + 3, wd * random.random())
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode="mirror")
2021-12-21 02:23:41 +00:00
return img
def add_resize(img, sf=4):
rnum = np.random.rand()
if rnum > 0.8: # up
sf1 = random.uniform(1, 2)
elif rnum < 0.7: # down
sf1 = random.uniform(0.5 / sf, 1)
else:
sf1 = 1.0
img = cv2.resize(
img,
(int(sf1 * img.shape[1]), int(sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
img = np.clip(img, 0.0, 1.0)
return img
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
# noise_level = random.randint(noise_level1, noise_level2)
# rnum = np.random.rand()
# if rnum > 0.6: # add color Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
# elif rnum < 0.4: # add grayscale Gaussian noise
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
# else: # add noise
# L = noise_level2 / 255.
# D = np.diag(np.random.rand(3))
# U = orth(np.random.rand(3, 3))
# conv = np.dot(np.dot(np.transpose(U), D), U)
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
# img = np.clip(img, 0.0, 1.0)
# return img
2021-12-21 02:23:41 +00:00
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
rnum = np.random.rand()
if rnum > 0.6: # add color Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
2021-12-21 02:23:41 +00:00
elif rnum < 0.4: # add grayscale Gaussian noise
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
2021-12-21 02:23:41 +00:00
else: # add noise
L = noise_level2 / 255.0
2021-12-21 02:23:41 +00:00
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L**2 * conv), img.shape[:2]).astype(np.float32)
2021-12-21 02:23:41 +00:00
img = np.clip(img, 0.0, 1.0)
return img
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
noise_level = random.randint(noise_level1, noise_level2)
img = np.clip(img, 0.0, 1.0)
rnum = random.random()
if rnum > 0.6:
2023-03-03 06:02:00 +00:00
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
2021-12-21 02:23:41 +00:00
elif rnum < 0.4:
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
2021-12-21 02:23:41 +00:00
else:
L = noise_level2 / 255.0
2021-12-21 02:23:41 +00:00
D = np.diag(np.random.rand(3))
U = orth(np.random.rand(3, 3))
conv = np.dot(np.dot(np.transpose(U), D), U)
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L**2 * conv), img.shape[:2]).astype(np.float32)
2021-12-21 02:23:41 +00:00
img = np.clip(img, 0.0, 1.0)
return img
def add_Poisson_noise(img):
img = np.clip((img * 255.0).round(), 0, 255) / 255.0
2021-12-21 02:23:41 +00:00
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
if random.random() < 0.5:
img = np.random.poisson(img * vals).astype(np.float32) / vals
else:
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.0
2023-03-03 06:02:00 +00:00
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
2021-12-21 02:23:41 +00:00
img += noise_gray[:, :, np.newaxis]
img = np.clip(img, 0.0, 1.0)
return img
def add_JPEG_noise(img):
quality_factor = random.randint(30, 95)
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
2023-03-03 06:02:00 +00:00
result, encimg = cv2.imencode(".jpg", img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
2021-12-21 02:23:41 +00:00
img = cv2.imdecode(encimg, 1)
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
return img
def random_crop(lq, hq, sf=4, lq_patchsize=64):
h, w = lq.shape[:2]
rnd_h = random.randint(0, h - lq_patchsize)
rnd_w = random.randint(0, w - lq_patchsize)
lq = lq[rnd_h : rnd_h + lq_patchsize, rnd_w : rnd_w + lq_patchsize, :]
2021-12-21 02:23:41 +00:00
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
hq = hq[
rnd_h_H : rnd_h_H + lq_patchsize * sf,
rnd_w_H : rnd_w_H + lq_patchsize * sf,
:,
]
2021-12-21 02:23:41 +00:00
return lq, hq
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = img.shape[:2]
img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
2021-12-21 02:23:41 +00:00
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
2023-03-03 06:02:00 +00:00
raise ValueError(f"img size ({h1}X{w1}) is too small!")
2021-12-21 02:23:41 +00:00
hq = img.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
img = cv2.resize(
img,
(int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
else:
img = util.imresize_np(img, 1 / 2, True)
img = np.clip(img, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = (
shuffle_order[idx2],
shuffle_order[idx1],
)
2021-12-21 02:23:41 +00:00
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_blur(img, sf=sf)
elif i == 2:
a, b = img.shape[1], img.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
img = cv2.resize(
img,
(int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
else:
2023-03-03 06:02:00 +00:00
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
2021-12-21 02:23:41 +00:00
k_shifted = shift_pixel(k, sf)
2023-03-03 06:02:00 +00:00
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode="mirror")
2021-12-21 02:23:41 +00:00
img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0)
elif i == 3:
# downsample3
img = cv2.resize(
img,
(int(1 / sf * a), int(1 / sf * b)),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
img = np.clip(img, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
img = add_JPEG_noise(img)
elif i == 6:
# add processed camera sensor noise
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
return img, hq
# todo no isp_model?
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
2023-08-17 22:45:25 +00:00
jpeg_prob, scale2_prob = 0.9, 0.25
# isp_prob = 0.25 # uncomment with `if i== 6` block below
# sf_ori = sf # uncomment with `if i== 6` block below
2021-12-21 02:23:41 +00:00
h1, w1 = image.shape[:2]
image = image.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
2021-12-21 02:23:41 +00:00
h, w = image.shape[:2]
2023-08-17 22:45:25 +00:00
# hq = image.copy() # uncomment with `if i== 6` block below
2021-12-21 02:23:41 +00:00
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
image = cv2.resize(
image,
(int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
else:
image = util.imresize_np(image, 1 / 2, True)
image = np.clip(image, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = (
shuffle_order[idx2],
shuffle_order[idx1],
)
2021-12-21 02:23:41 +00:00
for i in shuffle_order:
if i == 0:
image = add_blur(image, sf=sf)
elif i == 1:
image = add_blur(image, sf=sf)
elif i == 2:
a, b = image.shape[1], image.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
image = cv2.resize(
image,
(
int(1 / sf1 * image.shape[1]),
int(1 / sf1 * image.shape[0]),
),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
else:
2023-03-03 06:02:00 +00:00
k = fspecial("gaussian", 25, random.uniform(0.1, 0.6 * sf))
2021-12-21 02:23:41 +00:00
k_shifted = shift_pixel(k, sf)
2023-03-03 06:02:00 +00:00
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode="mirror")
2021-12-21 02:23:41 +00:00
image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0)
elif i == 3:
# downsample3
image = cv2.resize(
image,
(int(1 / sf * a), int(1 / sf * b)),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
image = np.clip(image, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
image = add_JPEG_noise(image)
# elif i == 6:
# # add processed camera sensor noise
# if random.random() < isp_prob and isp_model is not None:
# with torch.no_grad():
# img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
image = add_JPEG_noise(image)
image = util.single2uint(image)
2023-03-03 06:02:00 +00:00
example = {"image": image}
2021-12-21 02:23:41 +00:00
return example
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
def degradation_bsrgan_plus(
img,
sf=4,
shuffle_prob=0.5,
use_sharp=True,
lq_patchsize=64,
isp_model=None,
):
2021-12-21 02:23:41 +00:00
"""
This is an extended degradation model by combining
the degradation models of BSRGAN and Real-ESRGAN
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
use_shuffle: the degradation shuffle
use_sharp: sharpening the img
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
h1, w1 = img.shape[:2]
img = img.copy()[: w1 - w1 % sf, : h1 - h1 % sf, ...] # mod crop
2021-12-21 02:23:41 +00:00
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
2023-03-03 06:02:00 +00:00
raise ValueError(f"img size ({h1}X{w1}) is too small!")
2021-12-21 02:23:41 +00:00
if use_sharp:
img = add_sharpening(img)
hq = img.copy()
if random.random() < shuffle_prob:
shuffle_order = random.sample(range(13), 13)
else:
shuffle_order = list(range(13))
# local shuffle for noise, JPEG is always the last one
2023-03-03 06:02:00 +00:00
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
2021-12-21 02:23:41 +00:00
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_resize(img, sf=sf)
elif i == 2:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 3:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 4:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 5:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
elif i == 6:
img = add_JPEG_noise(img)
elif i == 7:
img = add_blur(img, sf=sf)
elif i == 8:
img = add_resize(img, sf=sf)
elif i == 9:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 10:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 11:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 12:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
else:
2023-03-03 06:02:00 +00:00
print("check the shuffle!")
2021-12-21 02:23:41 +00:00
# resize to desired size
img = cv2.resize(
img,
(int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
interpolation=random.choice([1, 2, 3]),
)
2021-12-21 02:23:41 +00:00
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf, lq_patchsize)
return img, hq
2023-03-03 06:02:00 +00:00
if __name__ == "__main__":
print("hey")
img = util.imread_uint("utils/test.png", 3)
print(img)
img = util.uint2single(img)
print(img)
img = img[:448, :448]
h = img.shape[0] // 4
2023-03-03 06:02:00 +00:00
print("resizing to", h)
sf = 4
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
for i in range(20):
print(i)
img_lq = deg_fn(img)
print(img_lq)
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
print(img_lq.shape)
2023-03-03 06:02:00 +00:00
print("bicubic", img_lq_bicubic.shape)
2023-08-17 22:45:25 +00:00
# print(img_hq.shape)
lq_nearest = cv2.resize(
util.single2uint(img_lq),
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0,
)
lq_bicubic_nearest = cv2.resize(
util.single2uint(img_lq_bicubic),
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
interpolation=0,
)
2023-08-17 22:45:25 +00:00
# img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest], axis=1)
2023-03-03 06:02:00 +00:00
util.imsave(img_concat, str(i) + ".png")