InvokeAI/ldm/modules/image_degradation/utils_image.py

1025 lines
29 KiB
Python
Raw Normal View History

2021-12-21 02:23:41 +00:00
import os
import math
import random
import numpy as np
import torch
import cv2
from torchvision.utils import make_grid
from datetime import datetime
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
2021-12-21 02:23:41 +00:00
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
2021-12-21 02:23:41 +00:00
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# Kai Zhang (github: https://github.com/cszn)
# 03/Mar/2019
# --------------------------------------------
# https://github.com/twhui/SRGAN-pyTorch
# https://github.com/xinntao/BasicSR
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
IMG_EXTENSIONS = [
'.jpg',
'.JPG',
'.jpeg',
'.JPEG',
'.png',
'.PNG',
'.ppm',
'.PPM',
'.bmp',
'.BMP',
'.tif',
]
2021-12-21 02:23:41 +00:00
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def get_timestamp():
return datetime.now().strftime('%y%m%d-%H%M%S')
def imshow(x, title=None, cbar=False, figsize=None):
plt.figure(figsize=figsize)
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
if title:
plt.title(title)
if cbar:
plt.colorbar()
plt.show()
def surf(Z, cmap='rainbow', figsize=None):
plt.figure(figsize=figsize)
ax3 = plt.axes(projection='3d')
w, h = Z.shape[:2]
xx = np.arange(0, w, 1)
yy = np.arange(0, h, 1)
2021-12-21 02:23:41 +00:00
X, Y = np.meshgrid(xx, yy)
ax3.plot_surface(X, Y, Z, cmap=cmap)
# ax3.contour(X,Y,Z, zdim='z',offset=-2cmap=cmap)
2021-12-21 02:23:41 +00:00
plt.show()
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# get image pathes
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
def get_image_paths(dataroot):
paths = None # return None if dataroot is None
if dataroot is not None:
paths = sorted(_get_paths_from_images(dataroot))
return paths
def _get_paths_from_images(path):
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
images = []
for dirpath, _, fnames in sorted(os.walk(path)):
for fname in sorted(fnames):
if is_image_file(fname):
img_path = os.path.join(dirpath, fname)
images.append(img_path)
assert images, '{:s} has no valid image file'.format(path)
return images
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# split large images into small images
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
w, h = img.shape[:2]
patches = []
if w > p_max and h > p_max:
w1 = list(np.arange(0, w - p_size, p_size - p_overlap, dtype=np.int))
h1 = list(np.arange(0, h - p_size, p_size - p_overlap, dtype=np.int))
w1.append(w - p_size)
h1.append(h - p_size)
# print(w1)
# print(h1)
2021-12-21 02:23:41 +00:00
for i in w1:
for j in h1:
patches.append(img[i : i + p_size, j : j + p_size, :])
2021-12-21 02:23:41 +00:00
else:
patches.append(img)
return patches
def imssave(imgs, img_path):
"""
imgs: list, N images of size WxHxC
"""
img_name, ext = os.path.splitext(os.path.basename(img_path))
for i, img in enumerate(imgs):
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
new_path = os.path.join(
os.path.dirname(img_path),
img_name + str('_s{:04d}'.format(i)) + '.png',
)
2021-12-21 02:23:41 +00:00
cv2.imwrite(new_path, img)
def split_imageset(
original_dataroot,
taget_dataroot,
n_channels=3,
p_size=800,
p_overlap=96,
p_max=1000,
):
2021-12-21 02:23:41 +00:00
"""
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
will be splitted.
Args:
original_dataroot:
taget_dataroot:
p_size: size of small images
p_overlap: patch size in training is a good choice
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
"""
paths = get_image_paths(original_dataroot)
for img_path in paths:
# img_name, ext = os.path.splitext(os.path.basename(img_path))
img = imread_uint(img_path, n_channels=n_channels)
patches = patches_from_image(img, p_size, p_overlap, p_max)
imssave(
patches, os.path.join(taget_dataroot, os.path.basename(img_path))
)
# if original_dataroot == taget_dataroot:
# del img_path
2021-12-21 02:23:41 +00:00
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# makedir
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def mkdirs(paths):
if isinstance(paths, str):
mkdir(paths)
else:
for path in paths:
mkdir(path)
def mkdir_and_rename(path):
if os.path.exists(path):
new_name = path + '_archived_' + get_timestamp()
print('Path already exists. Rename it to [{:s}]'.format(new_name))
os.rename(path, new_name)
os.makedirs(path)
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# read image from path
# opencv is fast, but read BGR numpy image
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# get uint8 image of size HxWxn_channles (RGB)
# --------------------------------------------
def imread_uint(path, n_channels=3):
# input: path
# output: HxWx3(RGB or GGG), or HxWx1 (G)
if n_channels == 1:
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
img = np.expand_dims(img, axis=2) # HxWx1
elif n_channels == 3:
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
return img
# --------------------------------------------
# matlab's imwrite
# --------------------------------------------
def imsave(img, img_path):
img = np.squeeze(img)
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
cv2.imwrite(img_path, img)
2021-12-21 02:23:41 +00:00
def imwrite(img, img_path):
img = np.squeeze(img)
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
cv2.imwrite(img_path, img)
# --------------------------------------------
# get single image of size HxWxn_channles (BGR)
# --------------------------------------------
def read_img(path):
# read image by cv2
# return: Numpy float32, HWC, BGR, [0,1]
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
img = img.astype(np.float32) / 255.0
2021-12-21 02:23:41 +00:00
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
# some images have 4 channels
if img.shape[2] > 3:
img = img[:, :, :3]
return img
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# image format conversion
# --------------------------------------------
# numpy(single) <---> numpy(unit)
# numpy(single) <---> tensor
# numpy(unit) <---> tensor
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# numpy(single) [0, 1] <---> numpy(unit)
# --------------------------------------------
def uint2single(img):
return np.float32(img / 255.0)
2021-12-21 02:23:41 +00:00
def single2uint(img):
return np.uint8((img.clip(0, 1) * 255.0).round())
2021-12-21 02:23:41 +00:00
def uint162single(img):
return np.float32(img / 65535.0)
2021-12-21 02:23:41 +00:00
def single2uint16(img):
return np.uint16((img.clip(0, 1) * 65535.0).round())
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# numpy(unit) (HxWxC or HxW) <---> tensor
# --------------------------------------------
# convert uint to 4-dimensional torch tensor
def uint2tensor4(img):
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
return (
torch.from_numpy(np.ascontiguousarray(img))
.permute(2, 0, 1)
.float()
.div(255.0)
.unsqueeze(0)
)
2021-12-21 02:23:41 +00:00
# convert uint to 3-dimensional torch tensor
def uint2tensor3(img):
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
return (
torch.from_numpy(np.ascontiguousarray(img))
.permute(2, 0, 1)
.float()
.div(255.0)
)
2021-12-21 02:23:41 +00:00
# convert 2/3/4-dimensional torch tensor to uint
def tensor2uint(img):
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
return np.uint8((img * 255.0).round())
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# numpy(single) (HxWxC) <---> tensor
# --------------------------------------------
# convert single (HxWxC) to 3-dimensional torch tensor
def single2tensor3(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
# convert single (HxWxC) to 4-dimensional torch tensor
def single2tensor4(img):
return (
torch.from_numpy(np.ascontiguousarray(img))
.permute(2, 0, 1)
.float()
.unsqueeze(0)
)
2021-12-21 02:23:41 +00:00
# convert torch tensor to single
def tensor2single(img):
img = img.data.squeeze().float().cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
return img
2021-12-21 02:23:41 +00:00
# convert torch tensor to single
def tensor2single3(img):
img = img.data.squeeze().float().cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
elif img.ndim == 2:
img = np.expand_dims(img, axis=2)
return img
def single2tensor5(img):
return (
torch.from_numpy(np.ascontiguousarray(img))
.permute(2, 0, 1, 3)
.float()
.unsqueeze(0)
)
2021-12-21 02:23:41 +00:00
def single32tensor5(img):
return (
torch.from_numpy(np.ascontiguousarray(img))
.float()
.unsqueeze(0)
.unsqueeze(0)
)
2021-12-21 02:23:41 +00:00
def single42tensor4(img):
return (
torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
)
2021-12-21 02:23:41 +00:00
# from skimage.io import imread, imsave
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
"""
2021-12-21 02:23:41 +00:00
Converts a torch Tensor into an image Numpy array of BGR channel order
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
"""
tensor = (
tensor.squeeze().float().cpu().clamp_(*min_max)
) # squeeze first, then clamp
tensor = (tensor - min_max[0]) / (
min_max[1] - min_max[0]
) # to range [0,1]
2021-12-21 02:23:41 +00:00
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(
tensor, nrow=int(math.sqrt(n_img)), normalize=False
).numpy()
2021-12-21 02:23:41 +00:00
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(
n_dim
)
)
2021-12-21 02:23:41 +00:00
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# Augmentation, flipe and/or rotate
# --------------------------------------------
# The following two are enough.
# (1) augmet_img: numpy image of WxHxC or WxH
# (2) augment_img_tensor4: tensor image 1xCxWxH
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
def augment_img(img, mode=0):
"""Kai Zhang (github: https://github.com/cszn)"""
2021-12-21 02:23:41 +00:00
if mode == 0:
return img
elif mode == 1:
return np.flipud(np.rot90(img))
elif mode == 2:
return np.flipud(img)
elif mode == 3:
return np.rot90(img, k=3)
elif mode == 4:
return np.flipud(np.rot90(img, k=2))
elif mode == 5:
return np.rot90(img)
elif mode == 6:
return np.rot90(img, k=2)
elif mode == 7:
return np.flipud(np.rot90(img, k=3))
def augment_img_tensor4(img, mode=0):
"""Kai Zhang (github: https://github.com/cszn)"""
2021-12-21 02:23:41 +00:00
if mode == 0:
return img
elif mode == 1:
return img.rot90(1, [2, 3]).flip([2])
elif mode == 2:
return img.flip([2])
elif mode == 3:
return img.rot90(3, [2, 3])
elif mode == 4:
return img.rot90(2, [2, 3]).flip([2])
elif mode == 5:
return img.rot90(1, [2, 3])
elif mode == 6:
return img.rot90(2, [2, 3])
elif mode == 7:
return img.rot90(3, [2, 3]).flip([2])
def augment_img_tensor(img, mode=0):
"""Kai Zhang (github: https://github.com/cszn)"""
2021-12-21 02:23:41 +00:00
img_size = img.size()
img_np = img.data.cpu().numpy()
if len(img_size) == 3:
img_np = np.transpose(img_np, (1, 2, 0))
elif len(img_size) == 4:
img_np = np.transpose(img_np, (2, 3, 1, 0))
img_np = augment_img(img_np, mode=mode)
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
if len(img_size) == 3:
img_tensor = img_tensor.permute(2, 0, 1)
elif len(img_size) == 4:
img_tensor = img_tensor.permute(3, 2, 0, 1)
return img_tensor.type_as(img)
def augment_img_np3(img, mode=0):
if mode == 0:
return img
elif mode == 1:
return img.transpose(1, 0, 2)
elif mode == 2:
return img[::-1, :, :]
elif mode == 3:
img = img[::-1, :, :]
img = img.transpose(1, 0, 2)
return img
elif mode == 4:
return img[:, ::-1, :]
elif mode == 5:
img = img[:, ::-1, :]
img = img.transpose(1, 0, 2)
return img
elif mode == 6:
img = img[:, ::-1, :]
img = img[::-1, :, :]
return img
elif mode == 7:
img = img[:, ::-1, :]
img = img[::-1, :, :]
img = img.transpose(1, 0, 2)
return img
def augment_imgs(img_list, hflip=True, rot=True):
# horizontal flip OR rotate
hflip = hflip and random.random() < 0.5
vflip = rot and random.random() < 0.5
rot90 = rot and random.random() < 0.5
def _augment(img):
if hflip:
img = img[:, ::-1, :]
if vflip:
img = img[::-1, :, :]
if rot90:
img = img.transpose(1, 0, 2)
return img
return [_augment(img) for img in img_list]
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# modcrop and shave
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
def modcrop(img_in, scale):
# img_in: Numpy, HWC or HW
img = np.copy(img_in)
if img.ndim == 2:
H, W = img.shape
H_r, W_r = H % scale, W % scale
img = img[: H - H_r, : W - W_r]
2021-12-21 02:23:41 +00:00
elif img.ndim == 3:
H, W, C = img.shape
H_r, W_r = H % scale, W % scale
img = img[: H - H_r, : W - W_r, :]
2021-12-21 02:23:41 +00:00
else:
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
return img
def shave(img_in, border=0):
# img_in: Numpy, HWC or HW
img = np.copy(img_in)
h, w = img.shape[:2]
img = img[border : h - border, border : w - border]
2021-12-21 02:23:41 +00:00
return img
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# image processing process on numpy image
# channel_convert(in_c, tar_type, img_list):
# rgb2ycbcr(img, only_y=True):
# bgr2ycbcr(img, only_y=True):
# ycbcr2rgb(img):
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
def rgb2ycbcr(img, only_y=True):
"""same as matlab rgb2ycbcr
2021-12-21 02:23:41 +00:00
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
"""
2021-12-21 02:23:41 +00:00
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.0
2021-12-21 02:23:41 +00:00
# convert
if only_y:
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
else:
rlt = np.matmul(
img,
[
[65.481, -37.797, 112.0],
[128.553, -74.203, -93.786],
[24.966, 112.0, -18.214],
],
) / 255.0 + [16, 128, 128]
2021-12-21 02:23:41 +00:00
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.0
2021-12-21 02:23:41 +00:00
return rlt.astype(in_img_type)
def ycbcr2rgb(img):
"""same as matlab ycbcr2rgb
2021-12-21 02:23:41 +00:00
Input:
uint8, [0, 255]
float, [0, 1]
"""
2021-12-21 02:23:41 +00:00
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.0
2021-12-21 02:23:41 +00:00
# convert
rlt = np.matmul(
img,
[
[0.00456621, 0.00456621, 0.00456621],
[0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0],
],
) * 255.0 + [-222.921, 135.576, -276.836]
2021-12-21 02:23:41 +00:00
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.0
2021-12-21 02:23:41 +00:00
return rlt.astype(in_img_type)
def bgr2ycbcr(img, only_y=True):
"""bgr version of rgb2ycbcr
2021-12-21 02:23:41 +00:00
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
"""
2021-12-21 02:23:41 +00:00
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.0
2021-12-21 02:23:41 +00:00
# convert
if only_y:
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
rlt = np.matmul(
img,
[
[24.966, 112.0, -18.214],
[128.553, -74.203, -93.786],
[65.481, -37.797, 112.0],
],
) / 255.0 + [16, 128, 128]
2021-12-21 02:23:41 +00:00
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.0
2021-12-21 02:23:41 +00:00
return rlt.astype(in_img_type)
def channel_convert(in_c, tar_type, img_list):
# conversion among BGR, gray and y
if in_c == 3 and tar_type == 'gray': # BGR to gray
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
return [np.expand_dims(img, axis=2) for img in gray_list]
elif in_c == 3 and tar_type == 'y': # BGR to y
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
return [np.expand_dims(img, axis=2) for img in y_list]
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
else:
return img_list
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# metric, PSNR and SSIM
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# PSNR
# --------------------------------------------
def calculate_psnr(img1, img2, border=0):
# img1 and img2 have range [0, 255]
# img1 = img1.squeeze()
# img2 = img2.squeeze()
2021-12-21 02:23:41 +00:00
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border : h - border, border : w - border]
img2 = img2[border : h - border, border : w - border]
2021-12-21 02:23:41 +00:00
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2) ** 2)
2021-12-21 02:23:41 +00:00
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
# --------------------------------------------
# SSIM
# --------------------------------------------
def calculate_ssim(img1, img2, border=0):
"""calculate SSIM
2021-12-21 02:23:41 +00:00
the same outputs as MATLAB's
img1, img2: [0, 255]
"""
# img1 = img1.squeeze()
# img2 = img2.squeeze()
2021-12-21 02:23:41 +00:00
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border : h - border, border : w - border]
img2 = img2[border : h - border, border : w - border]
2021-12-21 02:23:41 +00:00
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1[:, :, i], img2[:, :, i]))
2021-12-21 02:23:41 +00:00
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def ssim(img1, img2):
C1 = (0.01 * 255) ** 2
C2 = (0.03 * 255) ** 2
2021-12-21 02:23:41 +00:00
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
)
2021-12-21 02:23:41 +00:00
return ssim_map.mean()
"""
2021-12-21 02:23:41 +00:00
# --------------------------------------------
# matlab's bicubic imresize (numpy and torch) [0, 1]
# --------------------------------------------
"""
2021-12-21 02:23:41 +00:00
# matlab 'imresize' function, now only support 'bicubic'
def cubic(x):
absx = torch.abs(x)
absx2 = absx**2
absx3 = absx**3
return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
-0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2
) * (((absx > 1) * (absx <= 2)).type_as(absx))
2021-12-21 02:23:41 +00:00
def calculate_weights_indices(
in_length, out_length, scale, kernel, kernel_width, antialiasing
):
2021-12-21 02:23:41 +00:00
if (scale < 1) and (antialiasing):
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
kernel_width = kernel_width / scale
# Output-space coordinates
x = torch.linspace(1, out_length, out_length)
# Input-space coordinates. Calculate the inverse mapping such that 0.5
# in output space maps to 0.5 in input space, and 0.5+scale in output
# space maps to 1.5 in input space.
u = x / scale + 0.5 * (1 - 1 / scale)
# What is the left-most pixel that can be involved in the computation?
left = torch.floor(u - kernel_width / 2)
# What is the maximum number of pixels that can be involved in the
# computation? Note: it's OK to use an extra pixel here; if the
# corresponding weights are all zero, it will be eliminated at the end
# of this function.
P = math.ceil(kernel_width) + 2
# The indices of the input pixels involved in computing the k-th output
# pixel are in row k of the indices matrix.
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(
0, P - 1, P
).view(1, P).expand(out_length, P)
2021-12-21 02:23:41 +00:00
# The weights used to compute the k-th output pixel are in row k of the
# weights matrix.
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
# apply cubic kernel
if (scale < 1) and (antialiasing):
weights = scale * cubic(distance_to_center * scale)
else:
weights = cubic(distance_to_center)
# Normalize the weights matrix so that each row sums to 1.
weights_sum = torch.sum(weights, 1).view(out_length, 1)
weights = weights / weights_sum.expand(out_length, P)
# If a column in weights is all zero, get rid of it. only consider the first and last column.
weights_zero_tmp = torch.sum((weights == 0), 0)
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
indices = indices.narrow(1, 1, P - 2)
weights = weights.narrow(1, 1, P - 2)
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
indices = indices.narrow(1, 0, P - 2)
weights = weights.narrow(1, 0, P - 2)
weights = weights.contiguous()
indices = indices.contiguous()
sym_len_s = -indices.min() + 1
sym_len_e = indices.max() - in_length
indices = indices + sym_len_s - 1
return weights, indices, int(sym_len_s), int(sym_len_e)
# --------------------------------------------
# imresize for tensor image [0, 1]
# --------------------------------------------
def imresize(img, scale, antialiasing=True):
# Now the scale should be the same for H and W
# input: img: pytorch tensor, CHW or HW [0,1]
# output: CHW or HW [0,1] w/o round
need_squeeze = True if img.dim() == 2 else False
if need_squeeze:
img.unsqueeze_(0)
in_C, in_H, in_W = img.size()
out_C, out_H, out_W = (
in_C,
math.ceil(in_H * scale),
math.ceil(in_W * scale),
)
2021-12-21 02:23:41 +00:00
kernel_width = 4
kernel = 'cubic'
# Return the desired dimension order for performing the resize. The
# strategy is to perform the resize first along the dimension with the
# smallest scale factor.
# Now we do not support this.
# get weights and indices
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
in_H, out_H, scale, kernel, kernel_width, antialiasing
)
2021-12-21 02:23:41 +00:00
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
in_W, out_W, scale, kernel, kernel_width, antialiasing
)
2021-12-21 02:23:41 +00:00
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
sym_patch = img[:, :sym_len_Hs, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
sym_patch = img[:, -sym_len_He:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(in_C, out_H, in_W)
kernel_width = weights_H.size(1)
for i in range(out_H):
idx = int(indices_H[i][0])
for j in range(out_C):
out_1[j, i, :] = (
img_aug[j, idx : idx + kernel_width, :]
.transpose(0, 1)
.mv(weights_H[i])
)
2021-12-21 02:23:41 +00:00
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
sym_patch = out_1[:, :, :sym_len_Ws]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
sym_patch = out_1[:, :, -sym_len_We:]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(in_C, out_H, out_W)
kernel_width = weights_W.size(1)
for i in range(out_W):
idx = int(indices_W[i][0])
for j in range(out_C):
out_2[j, :, i] = out_1_aug[j, :, idx : idx + kernel_width].mv(
weights_W[i]
)
2021-12-21 02:23:41 +00:00
if need_squeeze:
out_2.squeeze_()
return out_2
# --------------------------------------------
# imresize for numpy image [0, 1]
# --------------------------------------------
def imresize_np(img, scale, antialiasing=True):
# Now the scale should be the same for H and W
# input: img: Numpy, HWC or HW [0,1]
# output: HWC or HW [0,1] w/o round
img = torch.from_numpy(img)
need_squeeze = True if img.dim() == 2 else False
if need_squeeze:
img.unsqueeze_(2)
in_H, in_W, in_C = img.size()
out_C, out_H, out_W = (
in_C,
math.ceil(in_H * scale),
math.ceil(in_W * scale),
)
2021-12-21 02:23:41 +00:00
kernel_width = 4
kernel = 'cubic'
# Return the desired dimension order for performing the resize. The
# strategy is to perform the resize first along the dimension with the
# smallest scale factor.
# Now we do not support this.
# get weights and indices
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
in_H, out_H, scale, kernel, kernel_width, antialiasing
)
2021-12-21 02:23:41 +00:00
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
in_W, out_W, scale, kernel, kernel_width, antialiasing
)
2021-12-21 02:23:41 +00:00
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
sym_patch = img[:sym_len_Hs, :, :]
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(0, inv_idx)
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
sym_patch = img[-sym_len_He:, :, :]
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(0, inv_idx)
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(out_H, in_W, in_C)
kernel_width = weights_H.size(1)
for i in range(out_H):
idx = int(indices_H[i][0])
for j in range(out_C):
out_1[i, :, j] = (
img_aug[idx : idx + kernel_width, :, j]
.transpose(0, 1)
.mv(weights_H[i])
)
2021-12-21 02:23:41 +00:00
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
sym_patch = out_1[:, :sym_len_Ws, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
sym_patch = out_1[:, -sym_len_We:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(out_H, out_W, in_C)
kernel_width = weights_W.size(1)
for i in range(out_W):
idx = int(indices_W[i][0])
for j in range(out_C):
out_2[:, i, j] = out_1_aug[:, idx : idx + kernel_width, j].mv(
weights_W[i]
)
2021-12-21 02:23:41 +00:00
if need_squeeze:
out_2.squeeze_()
return out_2.numpy()
if __name__ == '__main__':
print('---')
# img = imread_uint('test.bmp', 3)
# img = uint2single(img)
# img_bicubic = imresize_np(img, 1/4)