InvokeAI/invokeai/backend/tiles/utils.py

48 lines
1.8 KiB
Python
Raw Normal View History

from typing import Optional
import numpy as np
from pydantic import BaseModel, Field
class TBLR(BaseModel):
top: int
bottom: int
left: int
right: int
def __eq__(self, other):
return (
self.top == other.top
and self.bottom == other.bottom
and self.left == other.left
and self.right == other.right
)
class Tile(BaseModel):
coords: TBLR = Field(description="The coordinates of this tile relative to its parent image.")
overlap: TBLR = Field(description="The amount of overlap with adjacent tiles on each side of this tile.")
def __eq__(self, other):
return self.coords == other.coords and self.overlap == other.overlap
def paste(dst_image: np.ndarray, src_image: np.ndarray, box: TBLR, mask: Optional[np.ndarray] = None):
"""Paste a source image into a destination image.
Args:
dst_image (torch.Tensor): The destination image to paste into. Shape: (H, W, C).
src_image (torch.Tensor): The source image to paste. Shape: (H, W, C). H and W must be compatible with 'box'.
box (TBLR): Box defining the region in the 'dst_image' where 'src_image' will be pasted.
mask (Optional[torch.Tensor]): A mask that defines the blending between 'src_image' and 'dst_image'.
Range: [0.0, 1.0], Shape: (H, W). The output is calculate per-pixel according to
`src * mask + dst * (1 - mask)`.
"""
if mask is None:
dst_image[box.top : box.bottom, box.left : box.right] = src_image
else:
mask = np.expand_dims(mask, -1)
dst_image_box = dst_image[box.top : box.bottom, box.left : box.right]
dst_image[box.top : box.bottom, box.left : box.right] = src_image * mask + dst_image_box * (1.0 - mask)