InvokeAI/invokeai/app/invocations/flux_text_to_image.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

175 lines
6.9 KiB
Python
Raw Normal View History

from pathlib import Path
from typing import Literal
2024-08-12 18:04:23 +00:00
from pydantic import Field
2024-08-14 23:30:53 +00:00
import accelerate
import torch
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
2024-08-12 18:04:23 +00:00
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from invokeai.app.invocations.model import TransformerField, VAEField
2024-08-12 18:04:23 +00:00
from optimum.quanto import qfloat8
from PIL import Image
2024-08-14 23:30:53 +00:00
from safetensors.torch import load_file
from transformers.models.auto import AutoModelForTextEncoding
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import (
ConditioningField,
FieldDescriptions,
Input,
InputField,
WithBoard,
WithMetadata,
2024-08-12 18:04:23 +00:00
UIType,
)
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
2024-08-15 16:30:47 +00:00
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
2024-08-16 20:22:49 +00:00
from invokeai.backend.util.devices import TorchDevice
TFluxModelKeys = Literal["flux-schnell"]
FLUX_MODELS: dict[TFluxModelKeys, str] = {"flux-schnell": "black-forest-labs/FLUX.1-schnell"}
class QuantizedFluxTransformer2DModel(FastQuantizedDiffusersModel):
base_class = FluxTransformer2DModel
class QuantizedModelForTextEncoding(FastQuantizedTransformersModel):
auto_class = AutoModelForTextEncoding
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image"],
category="image",
version="1.0.0",
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
transformer: TransformerField = InputField(
description=FieldDescriptions.unet,
input=Input.Connection,
title="Transformer",
2024-08-12 18:04:23 +00:00
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
positive_text_conditioning: ConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
num_steps: int = InputField(default=4, description="Number of diffusion steps.")
guidance: float = InputField(
default=4.0,
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
latents = self._run_diffusion(context, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds)
image = self._run_vae_decoding(context, latents)
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)
def _run_diffusion(
self,
context: InvocationContext,
clip_embeddings: torch.Tensor,
t5_embeddings: torch.Tensor,
):
scheduler_info = context.models.load(self.transformer.scheduler)
transformer_info = context.models.load(self.transformer.transformer)
2024-08-07 22:10:09 +00:00
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
# if the cache is not empty.
# context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
with (
transformer_info as transformer,
scheduler_info as scheduler
):
assert isinstance(transformer, FluxTransformer2DModel)
assert isinstance(scheduler, FlowMatchEulerDiscreteScheduler)
2024-08-16 20:22:49 +00:00
x = denoise(
model=transformer,
img=img,
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
guidance=self.guidance,
)
2024-08-16 20:22:49 +00:00
x = unpack(x.float(), self.height, self.width)
return x
def _prepare_latent_img_patches(self, latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Convert an input image in latent space to patches for diffusion.
This implementation was extracted from:
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
Returns:
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
"""
bs, c, h, w = latent_img.shape
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
# Generate patch position ids.
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return img, img_ids
2024-08-07 22:10:09 +00:00
def _run_vae_decoding(
self,
context: InvocationContext,
latents: torch.Tensor,
) -> Image.Image:
vae_info = context.models.load(self.vae.vae)
with vae_info as vae:
assert isinstance(vae, AutoencoderKL)
2024-08-16 20:22:49 +00:00
img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c")
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
latents = flux_pipeline_with_vae._unpack_latents(
latents, self.height, self.width, flux_pipeline_with_vae.vae_scale_factor
)
latents = (
latents / flux_pipeline_with_vae.vae.config.scaling_factor
) + flux_pipeline_with_vae.vae.config.shift_factor
latents = latents.to(dtype=vae.dtype)
image = flux_pipeline_with_vae.vae.decode(latents, return_dict=False)[0]
image = flux_pipeline_with_vae.image_processor.postprocess(image, output_type="pil")[0]
assert isinstance(image, Image.Image)
return image