mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
194 lines
6.7 KiB
Python
194 lines
6.7 KiB
Python
|
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
|
||
|
"""
|
||
|
Base class for model loading in InvokeAI.
|
||
|
|
||
|
Use like this:
|
||
|
|
||
|
loader = AnyModelLoader(...)
|
||
|
loaded_model = loader.get_model('019ab39adfa1840455')
|
||
|
with loaded_model as model: # context manager moves model into VRAM
|
||
|
# do something with loaded_model
|
||
|
"""
|
||
|
|
||
|
from abc import ABC, abstractmethod
|
||
|
from dataclasses import dataclass
|
||
|
from logging import Logger
|
||
|
from pathlib import Path
|
||
|
from typing import Any, Callable, Dict, Optional, Type, Union
|
||
|
|
||
|
import torch
|
||
|
from diffusers import DiffusionPipeline
|
||
|
from injector import inject
|
||
|
|
||
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||
|
from invokeai.app.services.model_records import ModelRecordServiceBase
|
||
|
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
||
|
from invokeai.backend.model_manager.convert_cache import ModelConvertCacheBase
|
||
|
from invokeai.backend.model_manager.onnx_runtime import IAIOnnxRuntimeModel
|
||
|
from invokeai.backend.model_manager.ram_cache import ModelCacheBase
|
||
|
|
||
|
AnyModel = Union[DiffusionPipeline, torch.nn.Module, IAIOnnxRuntimeModel]
|
||
|
|
||
|
|
||
|
class ModelLockerBase(ABC):
|
||
|
"""Base class for the model locker used by the loader."""
|
||
|
|
||
|
@abstractmethod
|
||
|
def lock(self) -> None:
|
||
|
"""Lock the contained model and move it into VRAM."""
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def unlock(self) -> None:
|
||
|
"""Unlock the contained model, and remove it from VRAM."""
|
||
|
pass
|
||
|
|
||
|
@property
|
||
|
@abstractmethod
|
||
|
def model(self) -> AnyModel:
|
||
|
"""Return the model."""
|
||
|
pass
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class LoadedModel:
|
||
|
"""Context manager object that mediates transfer from RAM<->VRAM."""
|
||
|
|
||
|
config: AnyModelConfig
|
||
|
locker: ModelLockerBase
|
||
|
|
||
|
def __enter__(self) -> AnyModel: # I think load_file() always returns a dict
|
||
|
"""Context entry."""
|
||
|
self.locker.lock()
|
||
|
return self.model
|
||
|
|
||
|
def __exit__(self, *args: Any, **kwargs: Any) -> None:
|
||
|
"""Context exit."""
|
||
|
self.locker.unlock()
|
||
|
|
||
|
@property
|
||
|
def model(self) -> AnyModel:
|
||
|
"""Return the model without locking it."""
|
||
|
return self.locker.model()
|
||
|
|
||
|
|
||
|
class ModelLoaderBase(ABC):
|
||
|
"""Abstract base class for loading models into RAM/VRAM."""
|
||
|
|
||
|
@abstractmethod
|
||
|
def __init__(
|
||
|
self,
|
||
|
app_config: InvokeAIAppConfig,
|
||
|
logger: Logger,
|
||
|
ram_cache: ModelCacheBase,
|
||
|
convert_cache: ModelConvertCacheBase,
|
||
|
):
|
||
|
"""Initialize the loader."""
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
||
|
"""
|
||
|
Return a model given its key.
|
||
|
|
||
|
Given a model key identified in the model configuration backend,
|
||
|
return a ModelInfo object that can be used to retrieve the model.
|
||
|
|
||
|
:param model_config: Model configuration, as returned by ModelConfigRecordStore
|
||
|
:param submodel_type: an ModelType enum indicating the portion of
|
||
|
the model to retrieve (e.g. ModelType.Vae)
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def get_size_fs(
|
||
|
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
|
||
|
) -> int:
|
||
|
"""Return size in bytes of the model, calculated before loading."""
|
||
|
pass
|
||
|
|
||
|
|
||
|
# TO DO: Better name?
|
||
|
class AnyModelLoader:
|
||
|
"""This class manages the model loaders and invokes the correct one to load a model of given base and type."""
|
||
|
|
||
|
# this tracks the loader subclasses
|
||
|
_registry: Dict[str, Type[ModelLoaderBase]] = {}
|
||
|
|
||
|
@inject
|
||
|
def __init__(
|
||
|
self,
|
||
|
store: ModelRecordServiceBase,
|
||
|
app_config: InvokeAIAppConfig,
|
||
|
logger: Logger,
|
||
|
ram_cache: ModelCacheBase,
|
||
|
convert_cache: ModelConvertCacheBase,
|
||
|
):
|
||
|
"""Store the provided ModelRecordServiceBase and empty the registry."""
|
||
|
self._store = store
|
||
|
self._app_config = app_config
|
||
|
self._logger = logger
|
||
|
self._ram_cache = ram_cache
|
||
|
self._convert_cache = convert_cache
|
||
|
|
||
|
def get_model(self, key: str, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
||
|
"""
|
||
|
Return a model given its key.
|
||
|
|
||
|
Given a model key identified in the model configuration backend,
|
||
|
return a ModelInfo object that can be used to retrieve the model.
|
||
|
|
||
|
:param key: model key, as known to the config backend
|
||
|
:param submodel_type: an ModelType enum indicating the portion of
|
||
|
the model to retrieve (e.g. ModelType.Vae)
|
||
|
"""
|
||
|
model_config = self._store.get_model(key)
|
||
|
implementation = self.__class__.get_implementation(
|
||
|
base=model_config.base, type=model_config.type, format=model_config.format
|
||
|
)
|
||
|
return implementation(
|
||
|
app_config=self._app_config,
|
||
|
logger=self._logger,
|
||
|
ram_cache=self._ram_cache,
|
||
|
convert_cache=self._convert_cache,
|
||
|
).load_model(model_config, submodel_type)
|
||
|
|
||
|
@staticmethod
|
||
|
def _to_registry_key(base: BaseModelType, type: ModelType, format: ModelFormat) -> str:
|
||
|
return "-".join([base.value, type.value, format.value])
|
||
|
|
||
|
@classmethod
|
||
|
def get_implementation(cls, base: BaseModelType, type: ModelType, format: ModelFormat) -> Type[ModelLoaderBase]:
|
||
|
"""Get subclass of ModelLoaderBase registered to handle base and type."""
|
||
|
key1 = cls._to_registry_key(base, type, format) # for a specific base type
|
||
|
key2 = cls._to_registry_key(BaseModelType.Any, type, format) # with wildcard Any
|
||
|
implementation = cls._registry.get(key1) or cls._registry.get(key2)
|
||
|
if not implementation:
|
||
|
raise NotImplementedError(
|
||
|
"No subclass of LoadedModel is registered for base={base}, type={type}, format={format}"
|
||
|
)
|
||
|
return implementation
|
||
|
|
||
|
@classmethod
|
||
|
def register(
|
||
|
cls, type: ModelType, format: ModelFormat, base: BaseModelType = BaseModelType.Any
|
||
|
) -> Callable[[Type[ModelLoaderBase]], Type[ModelLoaderBase]]:
|
||
|
"""Define a decorator which registers the subclass of loader."""
|
||
|
|
||
|
def decorator(subclass: Type[ModelLoaderBase]) -> Type[ModelLoaderBase]:
|
||
|
print("Registering class", subclass.__name__)
|
||
|
key = cls._to_registry_key(base, type, format)
|
||
|
cls._registry[key] = subclass
|
||
|
return subclass
|
||
|
|
||
|
return decorator
|
||
|
|
||
|
|
||
|
# in _init__.py will call something like
|
||
|
# def configure_loader_dependencies(binder):
|
||
|
# binder.bind(ModelRecordServiceBase, ApiDependencies.invoker.services.model_records, scope=singleton)
|
||
|
# binder.bind(InvokeAIAppConfig, ApiDependencies.invoker.services.configuration, scope=singleton)
|
||
|
# etc
|
||
|
# injector = Injector(configure_loader_dependencies)
|
||
|
# loader = injector.get(ModelFactory)
|