2023-05-17 09:13:53 +00:00
|
|
|
from typing import Optional
|
2023-05-22 05:48:12 +00:00
|
|
|
from pydantic import BaseModel, Extra, Field, StrictFloat, StrictInt, StrictStr
|
2023-05-17 09:13:53 +00:00
|
|
|
|
|
|
|
|
2023-05-21 12:15:44 +00:00
|
|
|
class ImageMetadata(BaseModel):
|
|
|
|
"""
|
|
|
|
Core generation metadata for an image/tensor generated in InvokeAI.
|
|
|
|
|
|
|
|
Also includes any metadata from the image's PNG tEXt chunks.
|
2023-05-17 09:13:53 +00:00
|
|
|
|
2023-05-22 05:48:12 +00:00
|
|
|
Generated by traversing the execution graph, collecting the parameters of the nearest ancestors
|
|
|
|
of a given node.
|
2023-05-17 09:13:53 +00:00
|
|
|
|
|
|
|
Full metadata may be accessed by querying for the session in the `graph_executions` table.
|
|
|
|
"""
|
|
|
|
|
2023-05-22 05:48:12 +00:00
|
|
|
class Config:
|
|
|
|
extra = Extra.allow
|
|
|
|
"""
|
|
|
|
This lets the ImageMetadata class accept arbitrary additional fields. The CoreMetadataService
|
|
|
|
won't add any fields that are not already defined, but other a different metadata service
|
|
|
|
implementation might.
|
|
|
|
"""
|
|
|
|
|
|
|
|
type: Optional[StrictStr] = Field(
|
|
|
|
default=None,
|
|
|
|
description="The type of the ancestor node of the image output node.",
|
|
|
|
)
|
2023-05-17 09:13:53 +00:00
|
|
|
positive_conditioning: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The positive conditioning."
|
|
|
|
)
|
|
|
|
negative_conditioning: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The negative conditioning."
|
|
|
|
)
|
|
|
|
width: Optional[StrictInt] = Field(
|
2023-05-22 05:48:12 +00:00
|
|
|
default=None, description="Width of the image/latents in pixels."
|
2023-05-17 09:13:53 +00:00
|
|
|
)
|
|
|
|
height: Optional[StrictInt] = Field(
|
2023-05-22 05:48:12 +00:00
|
|
|
default=None, description="Height of the image/latents in pixels."
|
2023-05-17 09:13:53 +00:00
|
|
|
)
|
|
|
|
seed: Optional[StrictInt] = Field(
|
|
|
|
default=None, description="The seed used for noise generation."
|
|
|
|
)
|
|
|
|
cfg_scale: Optional[StrictFloat] = Field(
|
|
|
|
default=None, description="The classifier-free guidance scale."
|
|
|
|
)
|
|
|
|
steps: Optional[StrictInt] = Field(
|
|
|
|
default=None, description="The number of steps used for inference."
|
|
|
|
)
|
|
|
|
scheduler: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The scheduler used for inference."
|
|
|
|
)
|
|
|
|
model: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The model used for inference."
|
|
|
|
)
|
|
|
|
strength: Optional[StrictFloat] = Field(
|
|
|
|
default=None,
|
2023-05-22 05:48:12 +00:00
|
|
|
description="The strength used for image-to-image/latents-to-latents.",
|
2023-05-17 09:13:53 +00:00
|
|
|
)
|
2023-05-22 05:48:12 +00:00
|
|
|
latents: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The ID of the initial latents."
|
2023-05-17 09:13:53 +00:00
|
|
|
)
|
2023-05-22 05:48:12 +00:00
|
|
|
vae: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The VAE used for decoding."
|
|
|
|
)
|
|
|
|
unet: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The UNet used dor inference."
|
|
|
|
)
|
|
|
|
clip: Optional[StrictStr] = Field(
|
|
|
|
default=None, description="The CLIP Encoder used for conditioning."
|
2023-05-17 09:13:53 +00:00
|
|
|
)
|
|
|
|
extra: Optional[StrictStr] = Field(
|
2023-05-22 05:48:12 +00:00
|
|
|
default=None,
|
|
|
|
description="Uploaded image metadata, extracted from the PNG tEXt chunk.",
|
2023-05-17 09:13:53 +00:00
|
|
|
)
|