InvokeAI/invokeai/backend/model_management/models/sdxl.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

122 lines
4.1 KiB
Python
Raw Normal View History

import os
import json
from enum import Enum
from pydantic import Field
from typing import Literal, Optional
from .base import (
ModelConfigBase,
BaseModelType,
ModelType,
ModelVariantType,
DiffusersModel,
read_checkpoint_meta,
classproperty,
)
from omegaconf import OmegaConf
class StableDiffusionXLModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
class StableDiffusionXLModel(DiffusersModel):
# TODO: check that configs overwriten properly
class DiffusersConfig(ModelConfigBase):
model_format: Literal[StableDiffusionXLModelFormat.Diffusers]
vae: Optional[str] = Field(None)
variant: ModelVariantType
class CheckpointConfig(ModelConfigBase):
model_format: Literal[StableDiffusionXLModelFormat.Checkpoint]
vae: Optional[str] = Field(None)
config: str
variant: ModelVariantType
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert base_model in {BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner}
assert model_type == ModelType.Main
super().__init__(
model_path=model_path,
base_model=BaseModelType.StableDiffusionXL,
model_type=ModelType.Main,
)
@classmethod
def probe_config(cls, path: str, **kwargs):
model_format = cls.detect_format(path)
ckpt_config_path = kwargs.get("config", None)
if model_format == StableDiffusionXLModelFormat.Checkpoint:
if ckpt_config_path:
ckpt_config = OmegaConf.load(ckpt_config_path)
in_channels = ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
else:
checkpoint = read_checkpoint_meta(path)
checkpoint = checkpoint.get('state_dict', checkpoint)
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
elif model_format == StableDiffusionXLModelFormat.Diffusers:
unet_config_path = os.path.join(path, "unet", "config.json")
if os.path.exists(unet_config_path):
with open(unet_config_path, "r") as f:
unet_config = json.loads(f.read())
in_channels = unet_config['in_channels']
else:
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
else:
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")
if in_channels == 9:
variant = ModelVariantType.Inpaint
elif in_channels == 5:
variant = ModelVariantType.Depth
elif in_channels == 4:
variant = ModelVariantType.Normal
else:
raise Exception("Unkown stable diffusion 2.* model format")
if ckpt_config_path is None:
# TO DO: implement picking
pass
return cls.create_config(
path=path,
model_format=model_format,
config=ckpt_config_path,
variant=variant,
)
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, model_path: str):
if os.path.isdir(model_path):
return StableDiffusionXLModelFormat.Diffusers
else:
return StableDiffusionXLModelFormat.Checkpoint
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
if isinstance(config, cls.CheckpointConfig):
from invokeai.backend.model_management.models.stable_diffusion import _convert_ckpt_and_cache
return _convert_ckpt_and_cache(
version=base_model,
model_config=config,
output_path=output_path,
model_type='SDXL',
no_safetensors=True, # giving errors for some reason
)
else:
return model_path