InvokeAI/invokeai/app/invocations/model.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

132 lines
4.6 KiB
Python
Raw Normal View History

from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.model_management import SDModelType
class ModelInfo(BaseModel):
model_name: str = Field(description="Info to load unet submodel")
model_type: str = Field(description="Info to load unet submodel")
submodel: Optional[str] = Field(description="Info to load unet submodel")
class UNetField(BaseModel):
unet: ModelInfo = Field(description="Info to load unet submodel")
scheduler: ModelInfo = Field(description="Info to load scheduler submodel")
# loras: List[ModelInfo]
class ClipField(BaseModel):
tokenizer: ModelInfo = Field(description="Info to load tokenizer submodel")
text_encoder: ModelInfo = Field(description="Info to load text_encoder submodel")
# loras: List[ModelInfo]
class VaeField(BaseModel):
# TODO: better naming?
vae: ModelInfo = Field(description="Info to load vae submodel")
class ModelLoaderOutput(BaseInvocationOutput):
"""Model loader output"""
#fmt: off
type: Literal["model_loader_output"] = "model_loader_output"
unet: UNetField = Field(default=None, description="UNet submodel")
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
vae: VaeField = Field(default=None, description="Vae submodel")
#fmt: on
class ModelLoaderInvocation(BaseInvocation):
"""Loading submodels of selected model."""
type: Literal["model_loader"] = "model_loader"
model_name: str = Field(default="", description="Model to load")
# TODO: precision?
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["model", "loader"],
"type_hints": {
"model_name": "model" # TODO: rename to model_name?
}
},
}
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
# TODO: not found exceptions
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.diffusers,
):
raise Exception(f"Unkown model name: {self.model_name}!")
"""
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.diffusers,
submodel=SDModelType.tokenizer,
):
raise Exception(
f"Failed to find tokenizer submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.diffusers,
submodel=SDModelType.text_encoder,
):
raise Exception(
f"Failed to find text_encoder submodel in {self.model_name}! Check if model corrupted"
)
if not context.services.model_manager.model_exists(
model_name=self.model_name,
model_type=SDModelType.diffusers,
submodel=SDModelType.unet,
):
raise Exception(
f"Failed to find unet submodel from {self.model_name}! Check if model corrupted"
)
"""
return ModelLoaderOutput(
unet=UNetField(
unet=ModelInfo(
model_name=self.model_name,
model_type=SDModelType.diffusers.name,
submodel=SDModelType.unet.name,
),
scheduler=ModelInfo(
model_name=self.model_name,
model_type=SDModelType.diffusers.name,
submodel=SDModelType.scheduler.name,
),
),
clip=ClipField(
tokenizer=ModelInfo(
model_name=self.model_name,
model_type=SDModelType.diffusers.name,
submodel=SDModelType.tokenizer.name,
),
text_encoder=ModelInfo(
model_name=self.model_name,
model_type=SDModelType.diffusers.name,
submodel=SDModelType.text_encoder.name,
),
),
vae=VaeField(
vae=ModelInfo(
model_name=self.model_name,
model_type=SDModelType.diffusers.name,
submodel=SDModelType.vae.name,
),
)
)