InvokeAI/notebooks/notebook_helpers.py

340 lines
9.5 KiB
Python
Raw Normal View History

2021-12-21 02:23:41 +00:00
from torchvision.datasets.utils import download_url
from ldm.util import instantiate_from_config
import torch
import os
2023-07-27 14:54:01 +00:00
2021-12-21 02:23:41 +00:00
# todo ?
from google.colab import files
from IPython.display import Image as ipyimg
import ipywidgets as widgets
from PIL import Image
from einops import rearrange, repeat
2023-08-17 22:45:25 +00:00
import torchvision
2021-12-21 02:23:41 +00:00
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import ismap
import time
from omegaconf import OmegaConf
from ldm.invoke.devices import choose_torch_device
2021-12-21 02:23:41 +00:00
2023-07-27 14:54:01 +00:00
def download_models(mode):
2021-12-21 02:23:41 +00:00
if mode == "superresolution":
# this is the small bsr light model
2023-07-27 14:54:01 +00:00
url_conf = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
url_ckpt = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
2021-12-21 02:23:41 +00:00
2023-07-27 14:54:01 +00:00
path_conf = "logs/diffusion/superresolution_bsr/configs/project.yaml"
path_ckpt = "logs/diffusion/superresolution_bsr/checkpoints/last.ckpt"
2021-12-21 02:23:41 +00:00
download_url(url_conf, path_conf)
download_url(url_ckpt, path_ckpt)
2023-07-27 14:54:01 +00:00
path_conf = path_conf + "/?dl=1" # fix it
path_ckpt = path_ckpt + "/?dl=1" # fix it
2021-12-21 02:23:41 +00:00
return path_conf, path_ckpt
else:
raise NotImplementedError
def load_model_from_config(config, ckpt):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
return {"model": model}, global_step
def get_model(mode):
path_conf, path_ckpt = download_models(mode)
config = OmegaConf.load(path_conf)
model, step = load_model_from_config(config, path_ckpt)
return model
def get_custom_cond(mode):
dest = "data/example_conditioning"
if mode == "superresolution":
uploaded_img = files.upload()
filename = next(iter(uploaded_img))
2023-07-27 14:54:01 +00:00
name, filetype = filename.split(".") # todo assumes just one dot in name !
2021-12-21 02:23:41 +00:00
os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}")
elif mode == "text_conditional":
2023-07-27 14:54:01 +00:00
w = widgets.Text(value="A cake with cream!", disabled=True)
2023-08-17 22:45:25 +00:00
display(w) # noqa: F821
2021-12-21 02:23:41 +00:00
2023-07-27 14:54:01 +00:00
with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", "w") as f:
2021-12-21 02:23:41 +00:00
f.write(w.value)
elif mode == "class_conditional":
w = widgets.IntSlider(min=0, max=1000)
2023-08-17 22:45:25 +00:00
display(w) # noqa: F821
2023-07-27 14:54:01 +00:00
with open(f"{dest}/{mode}/custom.txt", "w") as f:
2021-12-21 02:23:41 +00:00
f.write(w.value)
else:
raise NotImplementedError(f"cond not implemented for mode{mode}")
def get_cond_options(mode):
path = "data/example_conditioning"
path = os.path.join(path, mode)
onlyfiles = [f for f in sorted(os.listdir(path))]
return path, onlyfiles
def select_cond_path(mode):
path = "data/example_conditioning" # todo
path = os.path.join(path, mode)
onlyfiles = [f for f in sorted(os.listdir(path))]
2023-07-27 14:54:01 +00:00
selected = widgets.RadioButtons(options=onlyfiles, description="Select conditioning:", disabled=False)
2023-08-17 22:45:25 +00:00
display(selected) # noqa: F821
2021-12-21 02:23:41 +00:00
selected_path = os.path.join(path, selected.value)
return selected_path
def get_cond(mode, selected_path):
example = dict()
if mode == "superresolution":
up_f = 4
visualize_cond_img(selected_path)
c = Image.open(selected_path)
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True)
2023-07-27 14:54:01 +00:00
c_up = rearrange(c_up, "1 c h w -> 1 h w c")
c = rearrange(c, "1 c h w -> 1 h w c")
c = 2.0 * c - 1.0
2021-12-21 02:23:41 +00:00
device = choose_torch_device()
c = c.to(device)
2021-12-21 02:23:41 +00:00
example["LR_image"] = c
example["image"] = c_up
return example
def visualize_cond_img(path):
2023-08-17 22:45:25 +00:00
display(ipyimg(filename=path)) # noqa: F821
2021-12-21 02:23:41 +00:00
def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None):
example = get_cond(task, selected_path)
save_intermediate_vid = False
n_runs = 1
masked = False
guider = None
ckwargs = None
2023-07-27 14:54:01 +00:00
mode = "ddim"
2021-12-21 02:23:41 +00:00
ddim_use_x0_pred = False
2023-07-27 14:54:01 +00:00
temperature = 1.0
eta = 1.0
2021-12-21 02:23:41 +00:00
make_progrow = True
custom_shape = None
height, width = example["image"].shape[1:3]
split_input = height >= 128 and width >= 128
if split_input:
ks = 128
stride = 64
vqf = 4 #
2023-07-27 14:54:01 +00:00
model.split_input_params = {
"ks": (ks, ks),
"stride": (stride, stride),
"vqf": vqf,
"patch_distributed_vq": True,
"tie_braker": False,
"clip_max_weight": 0.5,
"clip_min_weight": 0.01,
"clip_max_tie_weight": 0.5,
"clip_min_tie_weight": 0.01,
}
2021-12-21 02:23:41 +00:00
else:
if hasattr(model, "split_input_params"):
delattr(model, "split_input_params")
invert_mask = False
x_T = None
for n in range(n_runs):
if custom_shape is not None:
x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
2023-07-27 14:54:01 +00:00
x_T = repeat(x_T, "1 c h w -> b c h w", b=custom_shape[0])
logs = make_convolutional_sample(
example,
model,
mode=mode,
custom_steps=custom_steps,
eta=eta,
swap_mode=False,
masked=masked,
invert_mask=invert_mask,
quantize_x0=False,
custom_schedule=None,
decode_interval=10,
resize_enabled=resize_enabled,
custom_shape=custom_shape,
temperature=temperature,
noise_dropout=0.0,
corrector=guider,
corrector_kwargs=ckwargs,
x_T=x_T,
save_intermediate_vid=save_intermediate_vid,
make_progrow=make_progrow,
ddim_use_x0_pred=ddim_use_x0_pred,
)
2021-12-21 02:23:41 +00:00
return logs
@torch.no_grad()
2023-07-27 14:54:01 +00:00
def convsample_ddim(
model,
cond,
steps,
shape,
eta=1.0,
callback=None,
normals_sequence=None,
mask=None,
x0=None,
quantize_x0=False,
img_callback=None,
temperature=1.0,
noise_dropout=0.0,
score_corrector=None,
corrector_kwargs=None,
x_T=None,
log_every_t=None,
):
2021-12-21 02:23:41 +00:00
ddim = DDIMSampler(model)
bs = shape[0] # dont know where this comes from but wayne
shape = shape[1:] # cut batch dim
print(f"Sampling with eta = {eta}; steps: {steps}")
2023-07-27 14:54:01 +00:00
samples, intermediates = ddim.sample(
steps,
batch_size=bs,
shape=shape,
conditioning=cond,
callback=callback,
normals_sequence=normals_sequence,
quantize_x0=quantize_x0,
eta=eta,
mask=mask,
x0=x0,
temperature=temperature,
verbose=False,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
)
2021-12-21 02:23:41 +00:00
return samples, intermediates
@torch.no_grad()
2023-07-27 14:54:01 +00:00
def make_convolutional_sample(
batch,
model,
mode="vanilla",
custom_steps=None,
eta=1.0,
swap_mode=False,
masked=False,
invert_mask=True,
quantize_x0=False,
custom_schedule=None,
decode_interval=1000,
resize_enabled=False,
custom_shape=None,
temperature=1.0,
noise_dropout=0.0,
corrector=None,
corrector_kwargs=None,
x_T=None,
save_intermediate_vid=False,
make_progrow=True,
ddim_use_x0_pred=False,
):
2021-12-21 02:23:41 +00:00
log = dict()
2023-07-27 14:54:01 +00:00
z, c, x, xrec, xc = model.get_input(
batch,
model.first_stage_key,
return_first_stage_outputs=True,
force_c_encode=not (hasattr(model, "split_input_params") and model.cond_stage_key == "coordinates_bbox"),
return_original_cond=True,
)
2021-12-21 02:23:41 +00:00
log_every_t = 1 if save_intermediate_vid else None
if custom_shape is not None:
z = torch.randn(custom_shape)
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
z0 = None
log["input"] = x
log["reconstruction"] = xrec
if ismap(xc):
log["original_conditioning"] = model.to_rgb(xc)
2023-07-27 14:54:01 +00:00
if hasattr(model, "cond_stage_key"):
2021-12-21 02:23:41 +00:00
log[model.cond_stage_key] = model.to_rgb(xc)
else:
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
if model.cond_stage_model:
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
2023-07-27 14:54:01 +00:00
if model.cond_stage_key == "class_label":
2021-12-21 02:23:41 +00:00
log[model.cond_stage_key] = xc[model.cond_stage_key]
with model.ema_scope("Plotting"):
t0 = time.time()
img_cb = None
2023-07-27 14:54:01 +00:00
sample, intermediates = convsample_ddim(
model,
c,
steps=custom_steps,
shape=z.shape,
eta=eta,
quantize_x0=quantize_x0,
img_callback=img_cb,
mask=None,
x0=z0,
temperature=temperature,
noise_dropout=noise_dropout,
score_corrector=corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
log_every_t=log_every_t,
)
2021-12-21 02:23:41 +00:00
t1 = time.time()
if ddim_use_x0_pred:
2023-07-27 14:54:01 +00:00
sample = intermediates["pred_x0"][-1]
2021-12-21 02:23:41 +00:00
x_sample = model.decode_first_stage(sample)
try:
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
log["sample_noquant"] = x_sample_noquant
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
2023-08-17 22:45:25 +00:00
except Exception:
2021-12-21 02:23:41 +00:00
pass
log["sample"] = x_sample
log["time"] = t1 - t0
return log