2023-03-03 06:02:00 +00:00
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
invokeai.models.diffusion.sampler
|
|
|
|
|
|
|
|
Base class for invokeai.models.diffusion.ddim, invokeai.models.diffusion.ksampler, etc
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
|
|
|
from functools import partial
|
|
|
|
|
2023-02-28 05:31:15 +00:00
|
|
|
import numpy as np
|
2023-03-03 06:02:00 +00:00
|
|
|
import torch
|
2023-02-28 05:31:15 +00:00
|
|
|
from tqdm import tqdm
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
from ...util import choose_torch_device
|
2023-03-02 18:28:17 +00:00
|
|
|
from ..diffusionmodules.util import (
|
2023-03-03 06:02:00 +00:00
|
|
|
extract_into_tensor,
|
2023-02-28 05:31:15 +00:00
|
|
|
make_ddim_sampling_parameters,
|
|
|
|
make_ddim_timesteps,
|
|
|
|
noise_like,
|
|
|
|
)
|
2023-03-03 06:02:00 +00:00
|
|
|
from .shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
|
|
|
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
class Sampler(object):
|
2023-03-03 06:02:00 +00:00
|
|
|
def __init__(self, model, schedule="linear", steps=None, device=None, **kwargs):
|
2023-02-28 05:31:15 +00:00
|
|
|
self.model = model
|
|
|
|
self.ddim_timesteps = None
|
|
|
|
self.ddpm_num_timesteps = steps
|
|
|
|
self.schedule = schedule
|
2023-03-03 06:02:00 +00:00
|
|
|
self.device = device or choose_torch_device()
|
|
|
|
self.invokeai_diffuser = InvokeAIDiffuserComponent(
|
|
|
|
self.model,
|
|
|
|
model_forward_callback=lambda x, sigma, cond: self.model.apply_model(
|
|
|
|
x, sigma, cond
|
|
|
|
),
|
|
|
|
)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
def register_buffer(self, name, attr):
|
|
|
|
if type(attr) == torch.Tensor:
|
|
|
|
if attr.device != torch.device(self.device):
|
|
|
|
attr = attr.to(torch.float32).to(torch.device(self.device))
|
|
|
|
setattr(self, name, attr)
|
|
|
|
|
|
|
|
# This method was copied over from ddim.py and probably does stuff that is
|
|
|
|
# ddim-specific. Disentangle at some point.
|
|
|
|
def make_schedule(
|
2023-03-03 06:02:00 +00:00
|
|
|
self,
|
|
|
|
ddim_num_steps,
|
|
|
|
ddim_discretize="uniform",
|
|
|
|
ddim_eta=0.0,
|
|
|
|
verbose=False,
|
2023-02-28 05:31:15 +00:00
|
|
|
):
|
|
|
|
self.total_steps = ddim_num_steps
|
|
|
|
self.ddim_timesteps = make_ddim_timesteps(
|
|
|
|
ddim_discr_method=ddim_discretize,
|
|
|
|
num_ddim_timesteps=ddim_num_steps,
|
|
|
|
num_ddpm_timesteps=self.ddpm_num_timesteps,
|
|
|
|
verbose=verbose,
|
|
|
|
)
|
|
|
|
alphas_cumprod = self.model.alphas_cumprod
|
|
|
|
assert (
|
|
|
|
alphas_cumprod.shape[0] == self.ddpm_num_timesteps
|
2023-03-03 06:02:00 +00:00
|
|
|
), "alphas have to be defined for each timestep"
|
|
|
|
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
self.register_buffer("betas", to_torch(self.model.betas))
|
|
|
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
2023-02-28 05:31:15 +00:00
|
|
|
self.register_buffer(
|
2023-03-03 06:02:00 +00:00
|
|
|
"alphas_cumprod_prev", to_torch(self.model.alphas_cumprod_prev)
|
2023-02-28 05:31:15 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
|
|
self.register_buffer(
|
2023-03-03 06:02:00 +00:00
|
|
|
"sqrt_alphas_cumprod", to_torch(np.sqrt(alphas_cumprod.cpu()))
|
2023-02-28 05:31:15 +00:00
|
|
|
)
|
|
|
|
self.register_buffer(
|
2023-03-03 06:02:00 +00:00
|
|
|
"sqrt_one_minus_alphas_cumprod",
|
2023-02-28 05:31:15 +00:00
|
|
|
to_torch(np.sqrt(1.0 - alphas_cumprod.cpu())),
|
|
|
|
)
|
|
|
|
self.register_buffer(
|
2023-03-03 06:02:00 +00:00
|
|
|
"log_one_minus_alphas_cumprod",
|
2023-02-28 05:31:15 +00:00
|
|
|
to_torch(np.log(1.0 - alphas_cumprod.cpu())),
|
|
|
|
)
|
|
|
|
self.register_buffer(
|
2023-03-03 06:02:00 +00:00
|
|
|
"sqrt_recip_alphas_cumprod",
|
2023-02-28 05:31:15 +00:00
|
|
|
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu())),
|
|
|
|
)
|
|
|
|
self.register_buffer(
|
2023-03-03 06:02:00 +00:00
|
|
|
"sqrt_recipm1_alphas_cumprod",
|
2023-02-28 05:31:15 +00:00
|
|
|
to_torch(np.sqrt(1.0 / alphas_cumprod.cpu() - 1)),
|
|
|
|
)
|
|
|
|
|
|
|
|
# ddim sampling parameters
|
|
|
|
(
|
|
|
|
ddim_sigmas,
|
|
|
|
ddim_alphas,
|
|
|
|
ddim_alphas_prev,
|
|
|
|
) = make_ddim_sampling_parameters(
|
|
|
|
alphacums=alphas_cumprod.cpu(),
|
|
|
|
ddim_timesteps=self.ddim_timesteps,
|
|
|
|
eta=ddim_eta,
|
|
|
|
verbose=verbose,
|
|
|
|
)
|
2023-03-03 06:02:00 +00:00
|
|
|
self.register_buffer("ddim_sigmas", ddim_sigmas)
|
|
|
|
self.register_buffer("ddim_alphas", ddim_alphas)
|
|
|
|
self.register_buffer("ddim_alphas_prev", ddim_alphas_prev)
|
|
|
|
self.register_buffer("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
2023-02-28 05:31:15 +00:00
|
|
|
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
|
|
|
(1 - self.alphas_cumprod_prev)
|
|
|
|
/ (1 - self.alphas_cumprod)
|
|
|
|
* (1 - self.alphas_cumprod / self.alphas_cumprod_prev)
|
|
|
|
)
|
|
|
|
self.register_buffer(
|
2023-03-03 06:02:00 +00:00
|
|
|
"ddim_sigmas_for_original_num_steps",
|
2023-02-28 05:31:15 +00:00
|
|
|
sigmas_for_original_sampling_steps,
|
|
|
|
)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
|
|
|
# fast, but does not allow for exact reconstruction
|
|
|
|
# t serves as an index to gather the correct alphas
|
|
|
|
if use_original_steps:
|
|
|
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
|
|
|
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
|
|
|
else:
|
|
|
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
|
|
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
|
|
|
|
|
|
|
if noise is None:
|
|
|
|
noise = torch.randn_like(x0)
|
|
|
|
return (
|
|
|
|
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
2023-03-03 06:02:00 +00:00
|
|
|
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise
|
2023-02-28 05:31:15 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def sample(
|
|
|
|
self,
|
2023-03-03 06:02:00 +00:00
|
|
|
S, # S is steps
|
2023-02-28 05:31:15 +00:00
|
|
|
batch_size,
|
|
|
|
shape,
|
|
|
|
conditioning=None,
|
|
|
|
callback=None,
|
|
|
|
normals_sequence=None,
|
2023-03-03 06:02:00 +00:00
|
|
|
img_callback=None, # TODO: this is very confusing because it is called "step_callback" elsewhere. Change.
|
2023-02-28 05:31:15 +00:00
|
|
|
quantize_x0=False,
|
|
|
|
eta=0.0,
|
|
|
|
mask=None,
|
|
|
|
x0=None,
|
|
|
|
temperature=1.0,
|
|
|
|
noise_dropout=0.0,
|
|
|
|
score_corrector=None,
|
|
|
|
corrector_kwargs=None,
|
|
|
|
verbose=False,
|
|
|
|
x_T=None,
|
|
|
|
log_every_t=100,
|
|
|
|
unconditional_guidance_scale=1.0,
|
|
|
|
unconditional_conditioning=None,
|
|
|
|
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
|
|
|
**kwargs,
|
|
|
|
):
|
|
|
|
if conditioning is not None:
|
|
|
|
if isinstance(conditioning, dict):
|
|
|
|
ctmp = conditioning[list(conditioning.keys())[0]]
|
|
|
|
while isinstance(ctmp, list):
|
|
|
|
ctmp = ctmp[0]
|
|
|
|
cbs = ctmp.shape[0]
|
|
|
|
if cbs != batch_size:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(
|
|
|
|
f"Warning: Got {cbs} conditionings but batch-size is {batch_size}"
|
|
|
|
)
|
2023-02-28 05:31:15 +00:00
|
|
|
else:
|
|
|
|
if conditioning.shape[0] != batch_size:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(
|
|
|
|
f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}"
|
|
|
|
)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
# check to see if make_schedule() has run, and if not, run it
|
|
|
|
if self.ddim_timesteps is None:
|
|
|
|
self.make_schedule(
|
|
|
|
ddim_num_steps=S,
|
2023-03-03 06:02:00 +00:00
|
|
|
ddim_eta=eta,
|
|
|
|
verbose=False,
|
2023-02-28 05:31:15 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
ts = self.get_timesteps(S)
|
|
|
|
|
|
|
|
# sampling
|
|
|
|
C, H, W = shape
|
|
|
|
shape = (batch_size, C, H, W)
|
|
|
|
samples, intermediates = self.do_sampling(
|
|
|
|
conditioning,
|
|
|
|
shape,
|
|
|
|
timesteps=ts,
|
|
|
|
callback=callback,
|
|
|
|
img_callback=img_callback,
|
|
|
|
quantize_denoised=quantize_x0,
|
|
|
|
mask=mask,
|
|
|
|
x0=x0,
|
|
|
|
ddim_use_original_steps=False,
|
|
|
|
noise_dropout=noise_dropout,
|
|
|
|
temperature=temperature,
|
|
|
|
score_corrector=score_corrector,
|
|
|
|
corrector_kwargs=corrector_kwargs,
|
|
|
|
x_T=x_T,
|
|
|
|
log_every_t=log_every_t,
|
|
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
|
|
steps=S,
|
2023-03-03 06:02:00 +00:00
|
|
|
**kwargs,
|
2023-02-28 05:31:15 +00:00
|
|
|
)
|
|
|
|
return samples, intermediates
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def do_sampling(
|
2023-03-03 06:02:00 +00:00
|
|
|
self,
|
|
|
|
cond,
|
|
|
|
shape,
|
|
|
|
timesteps=None,
|
|
|
|
x_T=None,
|
|
|
|
ddim_use_original_steps=False,
|
|
|
|
callback=None,
|
|
|
|
quantize_denoised=False,
|
|
|
|
mask=None,
|
|
|
|
x0=None,
|
|
|
|
img_callback=None,
|
|
|
|
log_every_t=100,
|
|
|
|
temperature=1.0,
|
|
|
|
noise_dropout=0.0,
|
|
|
|
score_corrector=None,
|
|
|
|
corrector_kwargs=None,
|
|
|
|
unconditional_guidance_scale=1.0,
|
|
|
|
unconditional_conditioning=None,
|
|
|
|
steps=None,
|
|
|
|
**kwargs,
|
2023-02-28 05:31:15 +00:00
|
|
|
):
|
|
|
|
b = shape[0]
|
|
|
|
time_range = (
|
|
|
|
list(reversed(range(0, timesteps)))
|
|
|
|
if ddim_use_original_steps
|
|
|
|
else np.flip(timesteps)
|
|
|
|
)
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
total_steps = steps
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
iterator = tqdm(
|
|
|
|
time_range,
|
2023-03-03 06:02:00 +00:00
|
|
|
desc=f"{self.__class__.__name__}",
|
2023-02-28 05:31:15 +00:00
|
|
|
total=total_steps,
|
|
|
|
dynamic_ncols=True,
|
|
|
|
)
|
|
|
|
old_eps = []
|
2023-03-03 06:02:00 +00:00
|
|
|
self.prepare_to_sample(t_enc=total_steps, all_timesteps_count=steps, **kwargs)
|
|
|
|
img = self.get_initial_image(x_T, shape, total_steps)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
# probably don't need this at all
|
2023-03-03 06:02:00 +00:00
|
|
|
intermediates = {"x_inter": [img], "pred_x0": [img]}
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
for i, step in enumerate(iterator):
|
|
|
|
index = total_steps - i - 1
|
2023-03-03 06:02:00 +00:00
|
|
|
ts = torch.full((b,), step, device=self.device, dtype=torch.long)
|
2023-02-28 05:31:15 +00:00
|
|
|
ts_next = torch.full(
|
|
|
|
(b,),
|
|
|
|
time_range[min(i + 1, len(time_range) - 1)],
|
|
|
|
device=self.device,
|
|
|
|
dtype=torch.long,
|
|
|
|
)
|
|
|
|
|
|
|
|
if mask is not None:
|
|
|
|
assert x0 is not None
|
|
|
|
img_orig = self.model.q_sample(
|
|
|
|
x0, ts
|
|
|
|
) # TODO: deterministic forward pass?
|
|
|
|
img = img_orig * mask + (1.0 - mask) * img
|
|
|
|
|
|
|
|
outs = self.p_sample(
|
|
|
|
img,
|
|
|
|
cond,
|
|
|
|
ts,
|
|
|
|
index=index,
|
|
|
|
use_original_steps=ddim_use_original_steps,
|
|
|
|
quantize_denoised=quantize_denoised,
|
|
|
|
temperature=temperature,
|
|
|
|
noise_dropout=noise_dropout,
|
|
|
|
score_corrector=score_corrector,
|
|
|
|
corrector_kwargs=corrector_kwargs,
|
|
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
|
|
old_eps=old_eps,
|
|
|
|
t_next=ts_next,
|
2023-03-03 06:02:00 +00:00
|
|
|
step_count=steps,
|
2023-02-28 05:31:15 +00:00
|
|
|
)
|
|
|
|
img, pred_x0, e_t = outs
|
|
|
|
|
|
|
|
old_eps.append(e_t)
|
|
|
|
if len(old_eps) >= 4:
|
|
|
|
old_eps.pop(0)
|
|
|
|
if callback:
|
|
|
|
callback(i)
|
|
|
|
if img_callback:
|
2023-03-03 06:02:00 +00:00
|
|
|
img_callback(img, i)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
if index % log_every_t == 0 or index == total_steps - 1:
|
2023-03-03 06:02:00 +00:00
|
|
|
intermediates["x_inter"].append(img)
|
|
|
|
intermediates["pred_x0"].append(pred_x0)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
return img, intermediates
|
|
|
|
|
|
|
|
# NOTE that decode() and sample() are almost the same code, and do the same thing.
|
|
|
|
# The variable names are changed in order to be confusing.
|
|
|
|
@torch.no_grad()
|
|
|
|
def decode(
|
2023-03-03 06:02:00 +00:00
|
|
|
self,
|
|
|
|
x_latent,
|
|
|
|
cond,
|
|
|
|
t_start,
|
|
|
|
img_callback=None,
|
|
|
|
unconditional_guidance_scale=1.0,
|
|
|
|
unconditional_conditioning=None,
|
|
|
|
use_original_steps=False,
|
|
|
|
init_latent=None,
|
|
|
|
mask=None,
|
|
|
|
all_timesteps_count=None,
|
|
|
|
**kwargs,
|
2023-02-28 05:31:15 +00:00
|
|
|
):
|
|
|
|
timesteps = (
|
|
|
|
np.arange(self.ddpm_num_timesteps)
|
|
|
|
if use_original_steps
|
|
|
|
else self.ddim_timesteps
|
|
|
|
)
|
|
|
|
timesteps = timesteps[:t_start]
|
|
|
|
|
|
|
|
time_range = np.flip(timesteps)
|
|
|
|
total_steps = timesteps.shape[0]
|
2023-03-03 06:02:00 +00:00
|
|
|
print(
|
|
|
|
f">> Running {self.__class__.__name__} sampling starting at step {self.total_steps - t_start} of {self.total_steps} ({total_steps} new sampling steps)"
|
|
|
|
)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
|
|
|
x_dec = x_latent
|
|
|
|
x0 = init_latent
|
|
|
|
self.prepare_to_sample(
|
|
|
|
t_enc=total_steps, all_timesteps_count=all_timesteps_count, **kwargs
|
|
|
|
)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
for i, step in enumerate(iterator):
|
|
|
|
index = total_steps - i - 1
|
|
|
|
ts = torch.full(
|
|
|
|
(x_latent.shape[0],),
|
|
|
|
step,
|
|
|
|
device=x_latent.device,
|
|
|
|
dtype=torch.long,
|
|
|
|
)
|
|
|
|
|
|
|
|
ts_next = torch.full(
|
|
|
|
(x_latent.shape[0],),
|
|
|
|
time_range[min(i + 1, len(time_range) - 1)],
|
|
|
|
device=self.device,
|
|
|
|
dtype=torch.long,
|
|
|
|
)
|
|
|
|
|
|
|
|
if mask is not None:
|
|
|
|
assert x0 is not None
|
|
|
|
xdec_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
|
|
|
|
x_dec = xdec_orig * mask + (1.0 - mask) * x_dec
|
|
|
|
|
|
|
|
outs = self.p_sample(
|
|
|
|
x_dec,
|
|
|
|
cond,
|
|
|
|
ts,
|
|
|
|
index=index,
|
|
|
|
use_original_steps=use_original_steps,
|
|
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
|
|
unconditional_conditioning=unconditional_conditioning,
|
2023-03-03 06:02:00 +00:00
|
|
|
t_next=ts_next,
|
|
|
|
step_count=len(self.ddim_timesteps),
|
2023-02-28 05:31:15 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
x_dec, pred_x0, e_t = outs
|
|
|
|
if img_callback:
|
2023-03-03 06:02:00 +00:00
|
|
|
img_callback(x_dec, i)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
|
|
|
return x_dec
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def get_initial_image(self, x_T, shape, timesteps=None):
|
2023-02-28 05:31:15 +00:00
|
|
|
if x_T is None:
|
|
|
|
return torch.randn(shape, device=self.device)
|
|
|
|
else:
|
|
|
|
return x_T
|
|
|
|
|
|
|
|
def p_sample(
|
2023-03-03 06:02:00 +00:00
|
|
|
self,
|
|
|
|
img,
|
|
|
|
cond,
|
|
|
|
ts,
|
|
|
|
index,
|
|
|
|
repeat_noise=False,
|
|
|
|
use_original_steps=False,
|
|
|
|
quantize_denoised=False,
|
|
|
|
temperature=1.0,
|
|
|
|
noise_dropout=0.0,
|
|
|
|
score_corrector=None,
|
|
|
|
corrector_kwargs=None,
|
|
|
|
unconditional_guidance_scale=1.0,
|
|
|
|
unconditional_conditioning=None,
|
|
|
|
old_eps=None,
|
|
|
|
t_next=None,
|
|
|
|
steps=None,
|
2023-02-28 05:31:15 +00:00
|
|
|
):
|
2023-03-03 06:02:00 +00:00
|
|
|
raise NotImplementedError(
|
|
|
|
"p_sample() must be implemented in a descendent class"
|
|
|
|
)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def prepare_to_sample(self, t_enc, **kwargs):
|
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
Hook that will be called right before the very first invocation of p_sample()
|
|
|
|
to allow subclass to do additional initialization. t_enc corresponds to the actual
|
|
|
|
number of steps that will be run, and may be less than total steps if img2img is
|
|
|
|
active.
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
pass
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def get_timesteps(self, ddim_steps):
|
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
The ddim and plms samplers work on timesteps. This method is called after
|
|
|
|
ddim_timesteps are created in make_schedule(), and selects the portion of
|
|
|
|
timesteps that will be used for sampling, depending on the t_enc in img2img.
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
return self.ddim_timesteps[:ddim_steps]
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def q_sample(self, x0, ts):
|
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
Returns self.model.q_sample(x0,ts). Is overridden in the k* samplers to
|
|
|
|
return self.model.inner_model.q_sample(x0,ts)
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
|
|
|
return self.model.q_sample(x0, ts)
|
2023-02-28 05:31:15 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def conditioning_key(self) -> str:
|
2023-02-28 05:31:15 +00:00
|
|
|
return self.model.model.conditioning_key
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def uses_inpainting_model(self) -> bool:
|
|
|
|
return self.conditioning_key() in ("hybrid", "concat")
|
2023-02-28 05:31:15 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
def adjust_settings(self, **kwargs):
|
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
This is a catch-all method for adjusting any instance variables
|
|
|
|
after the sampler is instantiated. No type-checking performed
|
|
|
|
here, so use with care!
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
2023-02-28 05:31:15 +00:00
|
|
|
for k in kwargs.keys():
|
|
|
|
try:
|
2023-03-03 06:02:00 +00:00
|
|
|
setattr(self, k, kwargs[k])
|
2023-02-28 05:31:15 +00:00
|
|
|
except AttributeError:
|
2023-03-03 06:02:00 +00:00
|
|
|
print(
|
|
|
|
f"** Warning: attempt to set unknown attribute {k} in sampler of type {type(self)}"
|
|
|
|
)
|