mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
68 lines
2.6 KiB
Python
68 lines
2.6 KiB
Python
|
import einops
|
||
|
import torch
|
||
|
|
||
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||
|
from invokeai.app.invocations.fields import (
|
||
|
FieldDescriptions,
|
||
|
ImageField,
|
||
|
Input,
|
||
|
InputField,
|
||
|
)
|
||
|
from invokeai.app.invocations.model import VAEField
|
||
|
from invokeai.app.invocations.primitives import LatentsOutput
|
||
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||
|
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
|
||
|
from invokeai.backend.model_manager import LoadedModel
|
||
|
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||
|
from invokeai.backend.util.devices import TorchDevice
|
||
|
|
||
|
|
||
|
@invocation(
|
||
|
"flux_vae_encode",
|
||
|
title="FLUX VAE Encode",
|
||
|
tags=["latents", "image", "vae", "i2l", "flux"],
|
||
|
category="latents",
|
||
|
version="1.0.0",
|
||
|
)
|
||
|
class FluxVaeEncodeInvocation(BaseInvocation):
|
||
|
"""Encodes an image into latents."""
|
||
|
|
||
|
image: ImageField = InputField(
|
||
|
description="The image to encode.",
|
||
|
)
|
||
|
vae: VAEField = InputField(
|
||
|
description=FieldDescriptions.vae,
|
||
|
input=Input.Connection,
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def vae_encode(vae_info: LoadedModel, image_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
# TODO(ryand): Expose seed parameter at the invocation level.
|
||
|
# TODO(ryand): Write a util function for generating random tensors that is consistent across devices / dtypes.
|
||
|
# There's a starting point in get_noise(...), but it needs to be extracted and generalized. This function
|
||
|
# should be used for VAE encode sampling.
|
||
|
generator = torch.Generator(device=TorchDevice.choose_torch_device()).manual_seed(0)
|
||
|
with vae_info as vae:
|
||
|
assert isinstance(vae, AutoEncoder)
|
||
|
image_tensor = image_tensor.to(
|
||
|
device=TorchDevice.choose_torch_device(), dtype=TorchDevice.choose_torch_dtype()
|
||
|
)
|
||
|
latents = vae.encode(image_tensor, sample=True, generator=generator)
|
||
|
return latents
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||
|
image = context.images.get_pil(self.image.image_name)
|
||
|
|
||
|
vae_info = context.models.load(self.vae.vae)
|
||
|
|
||
|
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||
|
if image_tensor.dim() == 3:
|
||
|
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||
|
|
||
|
latents = self.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
|
||
|
|
||
|
latents = latents.to("cpu")
|
||
|
name = context.tensors.save(tensor=latents)
|
||
|
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
|