2022-10-10 15:39:23 +00:00
|
|
|
name: invokeai
|
2022-08-31 04:33:23 +00:00
|
|
|
channels:
|
2022-09-03 18:28:34 +00:00
|
|
|
- pytorch
|
Move environment-mac.yaml to Python 3.9 and patch dream.py for Macs.
I'm using stable-diffusion on a 2022 Macbook M2 Air with 24 GB unified memory.
I see this taking about 2.0s/it.
I've moved many deps from pip to conda-forge, to take advantage of the
precompiled binaries. Some notes for Mac users, since I've seen a lot of
confusion about this:
One doesn't need the `apple` channel to run this on a Mac-- that's only
used by `tensorflow-deps`, required for running tensorflow-metal. For
that, I have an example environment.yml here:
https://developer.apple.com/forums/thread/711792?answerId=723276022#723276022
However, the `CONDA_ENV=osx-arm64` environment variable *is* needed to
ensure that you do not run any Intel-specific packages such as `mkl`,
which will fail with [cryptic errors](https://github.com/CompVis/stable-diffusion/issues/25#issuecomment-1226702274)
on the ARM architecture and cause the environment to break.
I've also added a comment in the env file about 3.10 not working yet.
When it becomes possible to update, those commands run on an osx-arm64
machine should work to determine the new version set.
Here's what a successful run of dream.py should look like:
```
$ python scripts/dream.py --full_precision SIGABRT(6) ↵ 08:42:59
* Initializing, be patient...
Loading model from models/ldm/stable-diffusion-v1/model.ckpt
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Using slower but more accurate full-precision math (--full_precision)
>> Setting Sampler to k_lms
model loaded in 6.12s
* Initialization done! Awaiting your command (-h for help, 'q' to quit)
dream> "an astronaut riding a horse"
Generating: 0%| | 0/1 [00:00<?, ?it/s]/Users/corajr/Documents/lstein/ldm/modules/embedding_manager.py:152: UserWarning: The operator 'aten::nonzero' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1662016319283/work/aten/src/ATen/mps/MPSFallback.mm:11.)
placeholder_idx = torch.where(
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [01:37<00:00, 1.95s/it]
Generating: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [01:38<00:00, 98.55s/it]
Usage stats:
1 image(s) generated in 98.60s
Max VRAM used for this generation: 0.00G
Outputs:
outputs/img-samples/000001.1525943180.png: "an astronaut riding a horse" -s50 -W512 -H512 -C7.5 -Ak_lms -F -S1525943180
```
2022-09-01 01:18:19 +00:00
|
|
|
- conda-forge
|
2022-08-31 04:33:23 +00:00
|
|
|
dependencies:
|
2022-10-28 21:11:07 +00:00
|
|
|
- python=3.9.13
|
|
|
|
- pip=22.2.2
|
2022-10-05 16:44:16 +00:00
|
|
|
|
2022-09-03 18:28:34 +00:00
|
|
|
# pytorch left unpinned
|
2022-10-28 21:51:43 +00:00
|
|
|
- pytorch=1.12.*
|
|
|
|
- torchvision=0.13.*
|
Move environment-mac.yaml to Python 3.9 and patch dream.py for Macs.
I'm using stable-diffusion on a 2022 Macbook M2 Air with 24 GB unified memory.
I see this taking about 2.0s/it.
I've moved many deps from pip to conda-forge, to take advantage of the
precompiled binaries. Some notes for Mac users, since I've seen a lot of
confusion about this:
One doesn't need the `apple` channel to run this on a Mac-- that's only
used by `tensorflow-deps`, required for running tensorflow-metal. For
that, I have an example environment.yml here:
https://developer.apple.com/forums/thread/711792?answerId=723276022#723276022
However, the `CONDA_ENV=osx-arm64` environment variable *is* needed to
ensure that you do not run any Intel-specific packages such as `mkl`,
which will fail with [cryptic errors](https://github.com/CompVis/stable-diffusion/issues/25#issuecomment-1226702274)
on the ARM architecture and cause the environment to break.
I've also added a comment in the env file about 3.10 not working yet.
When it becomes possible to update, those commands run on an osx-arm64
machine should work to determine the new version set.
Here's what a successful run of dream.py should look like:
```
$ python scripts/dream.py --full_precision SIGABRT(6) ↵ 08:42:59
* Initializing, be patient...
Loading model from models/ldm/stable-diffusion-v1/model.ckpt
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Using slower but more accurate full-precision math (--full_precision)
>> Setting Sampler to k_lms
model loaded in 6.12s
* Initialization done! Awaiting your command (-h for help, 'q' to quit)
dream> "an astronaut riding a horse"
Generating: 0%| | 0/1 [00:00<?, ?it/s]/Users/corajr/Documents/lstein/ldm/modules/embedding_manager.py:152: UserWarning: The operator 'aten::nonzero' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1662016319283/work/aten/src/ATen/mps/MPSFallback.mm:11.)
placeholder_idx = torch.where(
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [01:37<00:00, 1.95s/it]
Generating: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [01:38<00:00, 98.55s/it]
Usage stats:
1 image(s) generated in 98.60s
Max VRAM used for this generation: 0.00G
Outputs:
outputs/img-samples/000001.1525943180.png: "an astronaut riding a horse" -s50 -W512 -H512 -C7.5 -Ak_lms -F -S1525943180
```
2022-09-01 01:18:19 +00:00
|
|
|
|
|
|
|
# I suggest to keep the other deps sorted for convenience.
|
2022-09-03 18:28:34 +00:00
|
|
|
# To determine what the latest versions should be, run:
|
Move environment-mac.yaml to Python 3.9 and patch dream.py for Macs.
I'm using stable-diffusion on a 2022 Macbook M2 Air with 24 GB unified memory.
I see this taking about 2.0s/it.
I've moved many deps from pip to conda-forge, to take advantage of the
precompiled binaries. Some notes for Mac users, since I've seen a lot of
confusion about this:
One doesn't need the `apple` channel to run this on a Mac-- that's only
used by `tensorflow-deps`, required for running tensorflow-metal. For
that, I have an example environment.yml here:
https://developer.apple.com/forums/thread/711792?answerId=723276022#723276022
However, the `CONDA_ENV=osx-arm64` environment variable *is* needed to
ensure that you do not run any Intel-specific packages such as `mkl`,
which will fail with [cryptic errors](https://github.com/CompVis/stable-diffusion/issues/25#issuecomment-1226702274)
on the ARM architecture and cause the environment to break.
I've also added a comment in the env file about 3.10 not working yet.
When it becomes possible to update, those commands run on an osx-arm64
machine should work to determine the new version set.
Here's what a successful run of dream.py should look like:
```
$ python scripts/dream.py --full_precision SIGABRT(6) ↵ 08:42:59
* Initializing, be patient...
Loading model from models/ldm/stable-diffusion-v1/model.ckpt
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Using slower but more accurate full-precision math (--full_precision)
>> Setting Sampler to k_lms
model loaded in 6.12s
* Initialization done! Awaiting your command (-h for help, 'q' to quit)
dream> "an astronaut riding a horse"
Generating: 0%| | 0/1 [00:00<?, ?it/s]/Users/corajr/Documents/lstein/ldm/modules/embedding_manager.py:152: UserWarning: The operator 'aten::nonzero' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1662016319283/work/aten/src/ATen/mps/MPSFallback.mm:11.)
placeholder_idx = torch.where(
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [01:37<00:00, 1.95s/it]
Generating: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [01:38<00:00, 98.55s/it]
Usage stats:
1 image(s) generated in 98.60s
Max VRAM used for this generation: 0.00G
Outputs:
outputs/img-samples/000001.1525943180.png: "an astronaut riding a horse" -s50 -W512 -H512 -C7.5 -Ak_lms -F -S1525943180
```
2022-09-01 01:18:19 +00:00
|
|
|
#
|
|
|
|
# ```shell
|
2022-10-28 21:11:07 +00:00
|
|
|
# sed -E 's/invokeai/invokeai-updated/;20,99s/- ([^=]+)==.+/- \1/' environment-mac.yml > environment-mac-updated.yml
|
|
|
|
# CONDA_SUBDIR=osx-arm64 conda env create -f environment-mac-updated.yml && conda list -n invokeai-updated | awk ' {print " - " $1 "==" $2;} '
|
Move environment-mac.yaml to Python 3.9 and patch dream.py for Macs.
I'm using stable-diffusion on a 2022 Macbook M2 Air with 24 GB unified memory.
I see this taking about 2.0s/it.
I've moved many deps from pip to conda-forge, to take advantage of the
precompiled binaries. Some notes for Mac users, since I've seen a lot of
confusion about this:
One doesn't need the `apple` channel to run this on a Mac-- that's only
used by `tensorflow-deps`, required for running tensorflow-metal. For
that, I have an example environment.yml here:
https://developer.apple.com/forums/thread/711792?answerId=723276022#723276022
However, the `CONDA_ENV=osx-arm64` environment variable *is* needed to
ensure that you do not run any Intel-specific packages such as `mkl`,
which will fail with [cryptic errors](https://github.com/CompVis/stable-diffusion/issues/25#issuecomment-1226702274)
on the ARM architecture and cause the environment to break.
I've also added a comment in the env file about 3.10 not working yet.
When it becomes possible to update, those commands run on an osx-arm64
machine should work to determine the new version set.
Here's what a successful run of dream.py should look like:
```
$ python scripts/dream.py --full_precision SIGABRT(6) ↵ 08:42:59
* Initializing, be patient...
Loading model from models/ldm/stable-diffusion-v1/model.ckpt
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 859.52 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Using slower but more accurate full-precision math (--full_precision)
>> Setting Sampler to k_lms
model loaded in 6.12s
* Initialization done! Awaiting your command (-h for help, 'q' to quit)
dream> "an astronaut riding a horse"
Generating: 0%| | 0/1 [00:00<?, ?it/s]/Users/corajr/Documents/lstein/ldm/modules/embedding_manager.py:152: UserWarning: The operator 'aten::nonzero' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1662016319283/work/aten/src/ATen/mps/MPSFallback.mm:11.)
placeholder_idx = torch.where(
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [01:37<00:00, 1.95s/it]
Generating: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [01:38<00:00, 98.55s/it]
Usage stats:
1 image(s) generated in 98.60s
Max VRAM used for this generation: 0.00G
Outputs:
outputs/img-samples/000001.1525943180.png: "an astronaut riding a horse" -s50 -W512 -H512 -C7.5 -Ak_lms -F -S1525943180
```
2022-09-01 01:18:19 +00:00
|
|
|
# ```
|
2022-10-28 21:11:07 +00:00
|
|
|
- albumentations=1.2.1
|
|
|
|
- coloredlogs=15.0.1
|
|
|
|
- diffusers=0.6.0
|
|
|
|
- einops=0.4.1
|
|
|
|
- grpcio=1.46.4
|
|
|
|
- humanfriendly=10.0
|
|
|
|
- imageio=2.21.2
|
|
|
|
- imageio-ffmpeg=0.4.7
|
|
|
|
- imgaug=0.4.0
|
|
|
|
- kornia=0.6.7
|
|
|
|
- mpmath=1.2.1
|
2022-10-05 16:44:16 +00:00
|
|
|
- nomkl=1.0
|
2022-10-28 21:11:07 +00:00
|
|
|
- numpy=1.23.*
|
|
|
|
- omegaconf=2.1.1
|
|
|
|
- openh264=2.3.0
|
|
|
|
- onnx=1.12.0
|
|
|
|
- onnxruntime=1.12.1
|
|
|
|
- pudb=2022.1
|
|
|
|
- pytorch-lightning=1.7.7
|
|
|
|
- scipy=1.9.1
|
|
|
|
- streamlit=1.12.2
|
|
|
|
- sympy=1.10.1
|
|
|
|
- tensorboard=2.10.0
|
|
|
|
- torchmetrics=0.9.3
|
|
|
|
- opencv=4.6.*
|
|
|
|
- flask=2.1.3
|
|
|
|
- flask-socketio=5.3.0
|
|
|
|
- flask_cors=3.0.10
|
|
|
|
- eventlet=0.33.1
|
|
|
|
- protobuf=3.20.*
|
|
|
|
- send2trash=1.8.0
|
|
|
|
- transformers=4.23.*
|
|
|
|
- torch-fidelity=0.3.0
|
2022-08-31 04:33:23 +00:00
|
|
|
- pip:
|
2022-10-05 16:44:16 +00:00
|
|
|
- dependency_injector==4.40.0
|
|
|
|
- realesrgan==0.2.5.0
|
|
|
|
- test-tube==0.7.5
|
|
|
|
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
|
|
|
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
|
|
|
- -e git+https://github.com/Birch-san/k-diffusion.git@mps#egg=k_diffusion
|
|
|
|
- -e git+https://github.com/TencentARC/GFPGAN.git#egg=gfpgan
|
2022-10-20 03:20:25 +00:00
|
|
|
- -e git+https://github.com/invoke-ai/clipseg.git@models-rename#egg=clipseg
|
2022-10-05 16:44:16 +00:00
|
|
|
- -e .
|
2022-08-31 06:00:40 +00:00
|
|
|
variables:
|
|
|
|
PYTORCH_ENABLE_MPS_FALLBACK: 1
|