InvokeAI/invokeai/app/util/controlnet_utils.py

236 lines
8.3 KiB
Python
Raw Normal View History

import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import PIL_INTERPOLATION
from einops import rearrange
from controlnet_aux.util import HWC3, resize_image
###################################################################
# Copy of scripts/lvminthin.py from Mikubill/sd-webui-controlnet
###################################################################
# High Quality Edge Thinning using Pure Python
# Written by Lvmin Zhangu
# 2023 April
# Stanford University
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
lvmin_kernels_raw = [
np.array([
[-1, -1, -1],
[0, 1, 0],
[1, 1, 1]
], dtype=np.int32),
np.array([
[0, -1, -1],
[1, 1, -1],
[0, 1, 0]
], dtype=np.int32)
]
lvmin_kernels = []
lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
lvmin_prunings_raw = [
np.array([
[-1, -1, -1],
[-1, 1, -1],
[0, 0, -1]
], dtype=np.int32),
np.array([
[-1, -1, -1],
[-1, 1, -1],
[-1, 0, 0]
], dtype=np.int32)
]
lvmin_prunings = []
lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw]
lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw]
def remove_pattern(x, kernel):
objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel)
objects = np.where(objects > 127)
x[objects] = 0
return x, objects[0].shape[0] > 0
def thin_one_time(x, kernels):
y = x
is_done = True
for k in kernels:
y, has_update = remove_pattern(y, k)
if has_update:
is_done = False
return y, is_done
def lvmin_thin(x, prunings=True):
y = x
for i in range(32):
y, is_done = thin_one_time(y, lvmin_kernels)
if is_done:
break
if prunings:
y, _ = thin_one_time(y, lvmin_prunings)
return y
def nake_nms(x):
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
return y
###########################################################################
# Copied from detectmap_proc method in scripts/detectmap_proc.py in Mikubill/sd-webui-controlnet
# modified for InvokeAI
###########################################################################
# def detectmap_proc(detected_map, module, resize_mode, h, w):
@staticmethod
def np_img_resize(
np_img: np.ndarray,
resize_mode: str,
h: int,
w: int,
device: torch.device = torch.device('cpu')
):
print("in np_img_resize")
# if 'inpaint' in module:
# np_img = np_img.astype(np.float32)
# else:
# np_img = HWC3(np_img)
np_img = HWC3(np_img)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def get_pytorch_control(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = y.clone()
# y = y.to(devices.get_device_for("controlnet"))
y = y.to(device)
y = y.clone()
return y
def high_quality_resize(x: np.ndarray,
size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = np.unique(x.reshape(-1, x.shape[2]), axis=0).shape[0]
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
# if resize_mode == external_code.ResizeMode.RESIZE:
if resize_mode == "just_resize": # RESIZE
print("just resizing")
np_img = high_quality_resize(np_img, (w, h))
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
old_h, old_w, _ = np_img.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
# if resize_mode == external_code.ResizeMode.OUTER_FIT:
if resize_mode == "fill_resize": # OUTER_FIT
print("fill + resizing")
k = min(k0, k1)
borders = np.concatenate([np_img[0, :, :], np_img[-1, :, :], np_img[:, 0, :], np_img[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(np_img.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = np_img
np_img = high_quality_background
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img
else: # resize_mode == "crop_resize" (INNER_FIT)
print("crop + resizing")
k = max(k0, k1)
np_img = high_quality_resize(np_img, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = np_img.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
np_img = np_img[pad_h:pad_h + h, pad_w:pad_w + w]
np_img = safe_numpy(np_img)
return get_pytorch_control(np_img), np_img