InvokeAI/invokeai/backend/image_util/lama.py

57 lines
1.6 KiB
Python
Raw Normal View History

2023-08-23 19:25:24 +00:00
import gc
from typing import Any
import numpy as np
import torch
from PIL import Image
from invokeai.app.services.config import get_invokeai_config
from invokeai.backend.util.devices import choose_torch_device
def norm_img(np_img):
if len(np_img.shape) == 2:
np_img = np_img[:, :, np.newaxis]
np_img = np.transpose(np_img, (2, 0, 1))
np_img = np_img.astype("float32") / 255
return np_img
def load_jit_model(url_or_path, device):
model_path = url_or_path
print(f"Loading model from: {model_path}")
model = torch.jit.load(model_path, map_location="cpu").to(device)
model.eval()
return model
class LaMA:
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
device = choose_torch_device()
2023-08-23 19:27:00 +00:00
model_location = get_invokeai_config().models_path / "core/misc/lama/lama.pt"
2023-08-23 19:25:24 +00:00
model = load_jit_model(model_location, device)
image = np.asarray(input_image.convert("RGB"))
image = norm_img(image)
mask = input_image.split()[-1]
mask = np.asarray(mask)
mask = np.invert(mask)
mask = norm_img(mask)
mask = (mask > 0) * 1
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
2023-08-23 20:51:48 +00:00
with torch.inference_mode():
infilled_image = model(image, mask)
2023-08-23 19:25:24 +00:00
infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy()
infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8")
infilled_image = Image.fromarray(infilled_image)
del model
gc.collect()
return infilled_image