InvokeAI/invokeai/backend/util/attention.py

33 lines
1012 B
Python
Raw Normal View History

# Copyright (c) 2023 Lincoln Stein and the InvokeAI Team
"""
Utility routine used for autodetection of optimal slice size
for attention mechanism.
"""
import torch
2023-08-20 19:39:45 +00:00
import psutil
def auto_detect_slice_size(latents: torch.Tensor) -> str:
bytes_per_element_needed_for_baddbmm_duplication = latents.element_size() + 4
max_size_required_for_baddbmm = (
16
* latents.size(dim=2)
* latents.size(dim=3)
* latents.size(dim=2)
* latents.size(dim=3)
* bytes_per_element_needed_for_baddbmm_duplication
)
2023-08-20 19:39:45 +00:00
if latents.device.type in {"cpu", "mps"}:
mem_free = psutil.virtual_memory().free
elif latents.device.type == "cuda":
mem_free, _ = torch.cuda.mem_get_info(latents.device)
else:
raise ValueError(f"unrecognized device {latents.device}")
if max_size_required_for_baddbmm > (mem_free * 3.0 / 4.0):
return "max"
elif torch.backends.mps.is_available():
return "max"
else:
return "balanced"