mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
274 lines
10 KiB
Python
274 lines
10 KiB
Python
|
import math
|
||
|
from enum import Enum
|
||
|
from pathlib import Path
|
||
|
from typing import Any, Optional
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import numpy.typing as npt
|
||
|
import torch
|
||
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||
|
from cv2.typing import MatLike
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from invokeai.backend.util.devices import choose_torch_device
|
||
|
|
||
|
"""
|
||
|
Adapted from https://github.com/xinntao/Real-ESRGAN/blob/master/realesrgan/utils.py
|
||
|
|
||
|
The adaptation here has a few changes:
|
||
|
- Remove print statements, use `tqdm` to show progress
|
||
|
- Remove unused "outscale" logic, which simply scales the final image to a given factor
|
||
|
- Remove `dni_weight` logic, which was only used when multiple models were used
|
||
|
- Remove logic to fetch models from network
|
||
|
- Add types, rename a few things
|
||
|
"""
|
||
|
|
||
|
|
||
|
class ImageMode(str, Enum):
|
||
|
L = "L"
|
||
|
RGB = "RGB"
|
||
|
RGBA = "RGBA"
|
||
|
|
||
|
|
||
|
class RealESRGANer:
|
||
|
"""A helper class for upsampling images with RealESRGAN.
|
||
|
|
||
|
Args:
|
||
|
scale (int): Upsampling scale factor used in the networks. It is usually 2 or 4.
|
||
|
model_path (str): The path to the pretrained model. It can be urls (will first download it automatically).
|
||
|
model (nn.Module): The defined network. Default: None.
|
||
|
tile (int): As too large images result in the out of GPU memory issue, so this tile option will first crop
|
||
|
input images into tiles, and then process each of them. Finally, they will be merged into one image.
|
||
|
0 denotes for do not use tile. Default: 0.
|
||
|
tile_pad (int): The pad size for each tile, to remove border artifacts. Default: 10.
|
||
|
pre_pad (int): Pad the input images to avoid border artifacts. Default: 10.
|
||
|
half (float): Whether to use half precision during inference. Default: False.
|
||
|
"""
|
||
|
|
||
|
output: torch.Tensor
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
scale: int,
|
||
|
model_path: Path,
|
||
|
model: RRDBNet,
|
||
|
tile: int = 0,
|
||
|
tile_pad: int = 10,
|
||
|
pre_pad: int = 10,
|
||
|
half: bool = False,
|
||
|
) -> None:
|
||
|
self.scale = scale
|
||
|
self.tile_size = tile
|
||
|
self.tile_pad = tile_pad
|
||
|
self.pre_pad = pre_pad
|
||
|
self.mod_scale: Optional[int] = None
|
||
|
self.half = half
|
||
|
self.device = choose_torch_device()
|
||
|
|
||
|
loadnet = torch.load(model_path, map_location=torch.device("cpu"))
|
||
|
|
||
|
# prefer to use params_ema
|
||
|
if "params_ema" in loadnet:
|
||
|
keyname = "params_ema"
|
||
|
else:
|
||
|
keyname = "params"
|
||
|
|
||
|
model.load_state_dict(loadnet[keyname], strict=True)
|
||
|
model.eval()
|
||
|
self.model = model.to(self.device)
|
||
|
|
||
|
if self.half:
|
||
|
self.model = self.model.half()
|
||
|
|
||
|
def pre_process(self, img: MatLike) -> None:
|
||
|
"""Pre-process, such as pre-pad and mod pad, so that the images can be divisible"""
|
||
|
img_tensor: torch.Tensor = torch.from_numpy(np.transpose(img, (2, 0, 1))).float()
|
||
|
self.img = img_tensor.unsqueeze(0).to(self.device)
|
||
|
if self.half:
|
||
|
self.img = self.img.half()
|
||
|
|
||
|
# pre_pad
|
||
|
if self.pre_pad != 0:
|
||
|
self.img = torch.nn.functional.pad(self.img, (0, self.pre_pad, 0, self.pre_pad), "reflect")
|
||
|
# mod pad for divisible borders
|
||
|
if self.scale == 2:
|
||
|
self.mod_scale = 2
|
||
|
elif self.scale == 1:
|
||
|
self.mod_scale = 4
|
||
|
if self.mod_scale is not None:
|
||
|
self.mod_pad_h, self.mod_pad_w = 0, 0
|
||
|
_, _, h, w = self.img.size()
|
||
|
if h % self.mod_scale != 0:
|
||
|
self.mod_pad_h = self.mod_scale - h % self.mod_scale
|
||
|
if w % self.mod_scale != 0:
|
||
|
self.mod_pad_w = self.mod_scale - w % self.mod_scale
|
||
|
self.img = torch.nn.functional.pad(self.img, (0, self.mod_pad_w, 0, self.mod_pad_h), "reflect")
|
||
|
|
||
|
def process(self) -> None:
|
||
|
# model inference
|
||
|
self.output = self.model(self.img)
|
||
|
|
||
|
def tile_process(self) -> None:
|
||
|
"""It will first crop input images to tiles, and then process each tile.
|
||
|
Finally, all the processed tiles are merged into one images.
|
||
|
|
||
|
Modified from: https://github.com/ata4/esrgan-launcher
|
||
|
"""
|
||
|
batch, channel, height, width = self.img.shape
|
||
|
output_height = height * self.scale
|
||
|
output_width = width * self.scale
|
||
|
output_shape = (batch, channel, output_height, output_width)
|
||
|
|
||
|
# start with black image
|
||
|
self.output = self.img.new_zeros(output_shape)
|
||
|
tiles_x = math.ceil(width / self.tile_size)
|
||
|
tiles_y = math.ceil(height / self.tile_size)
|
||
|
|
||
|
# loop over all tiles
|
||
|
total_steps = tiles_y * tiles_x
|
||
|
for i in tqdm(range(total_steps), desc="Upscaling"):
|
||
|
y = i // tiles_x
|
||
|
x = i % tiles_x
|
||
|
# extract tile from input image
|
||
|
ofs_x = x * self.tile_size
|
||
|
ofs_y = y * self.tile_size
|
||
|
# input tile area on total image
|
||
|
input_start_x = ofs_x
|
||
|
input_end_x = min(ofs_x + self.tile_size, width)
|
||
|
input_start_y = ofs_y
|
||
|
input_end_y = min(ofs_y + self.tile_size, height)
|
||
|
|
||
|
# input tile area on total image with padding
|
||
|
input_start_x_pad = max(input_start_x - self.tile_pad, 0)
|
||
|
input_end_x_pad = min(input_end_x + self.tile_pad, width)
|
||
|
input_start_y_pad = max(input_start_y - self.tile_pad, 0)
|
||
|
input_end_y_pad = min(input_end_y + self.tile_pad, height)
|
||
|
|
||
|
# input tile dimensions
|
||
|
input_tile_width = input_end_x - input_start_x
|
||
|
input_tile_height = input_end_y - input_start_y
|
||
|
input_tile = self.img[
|
||
|
:,
|
||
|
:,
|
||
|
input_start_y_pad:input_end_y_pad,
|
||
|
input_start_x_pad:input_end_x_pad,
|
||
|
]
|
||
|
|
||
|
# upscale tile
|
||
|
with torch.no_grad():
|
||
|
output_tile = self.model(input_tile)
|
||
|
|
||
|
# output tile area on total image
|
||
|
output_start_x = input_start_x * self.scale
|
||
|
output_end_x = input_end_x * self.scale
|
||
|
output_start_y = input_start_y * self.scale
|
||
|
output_end_y = input_end_y * self.scale
|
||
|
|
||
|
# output tile area without padding
|
||
|
output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale
|
||
|
output_end_x_tile = output_start_x_tile + input_tile_width * self.scale
|
||
|
output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale
|
||
|
output_end_y_tile = output_start_y_tile + input_tile_height * self.scale
|
||
|
|
||
|
# put tile into output image
|
||
|
self.output[:, :, output_start_y:output_end_y, output_start_x:output_end_x] = output_tile[
|
||
|
:,
|
||
|
:,
|
||
|
output_start_y_tile:output_end_y_tile,
|
||
|
output_start_x_tile:output_end_x_tile,
|
||
|
]
|
||
|
|
||
|
def post_process(self) -> torch.Tensor:
|
||
|
# remove extra pad
|
||
|
if self.mod_scale is not None:
|
||
|
_, _, h, w = self.output.size()
|
||
|
self.output = self.output[
|
||
|
:,
|
||
|
:,
|
||
|
0 : h - self.mod_pad_h * self.scale,
|
||
|
0 : w - self.mod_pad_w * self.scale,
|
||
|
]
|
||
|
# remove prepad
|
||
|
if self.pre_pad != 0:
|
||
|
_, _, h, w = self.output.size()
|
||
|
self.output = self.output[
|
||
|
:,
|
||
|
:,
|
||
|
0 : h - self.pre_pad * self.scale,
|
||
|
0 : w - self.pre_pad * self.scale,
|
||
|
]
|
||
|
return self.output
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def enhance(self, img: MatLike, esrgan_alpha_upscale: bool = True) -> npt.NDArray[Any]:
|
||
|
np_img = img.astype(np.float32)
|
||
|
alpha: Optional[np.ndarray] = None
|
||
|
if np.max(np_img) > 256:
|
||
|
# 16-bit image
|
||
|
max_range = 65535
|
||
|
else:
|
||
|
max_range = 255
|
||
|
np_img = np_img / max_range
|
||
|
if len(np_img.shape) == 2:
|
||
|
# grayscale image
|
||
|
img_mode = ImageMode.L
|
||
|
np_img = cv2.cvtColor(np_img, cv2.COLOR_GRAY2RGB)
|
||
|
elif np_img.shape[2] == 4:
|
||
|
# RGBA image with alpha channel
|
||
|
img_mode = ImageMode.RGBA
|
||
|
alpha = np_img[:, :, 3]
|
||
|
np_img = np_img[:, :, 0:3]
|
||
|
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)
|
||
|
if esrgan_alpha_upscale:
|
||
|
alpha = cv2.cvtColor(alpha, cv2.COLOR_GRAY2RGB)
|
||
|
else:
|
||
|
img_mode = ImageMode.RGB
|
||
|
np_img = cv2.cvtColor(np_img, cv2.COLOR_BGR2RGB)
|
||
|
|
||
|
# ------------------- process image (without the alpha channel) ------------------- #
|
||
|
self.pre_process(np_img)
|
||
|
if self.tile_size > 0:
|
||
|
self.tile_process()
|
||
|
else:
|
||
|
self.process()
|
||
|
output_tensor = self.post_process()
|
||
|
output_img: npt.NDArray[Any] = output_tensor.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||
|
output_img = np.transpose(output_img[[2, 1, 0], :, :], (1, 2, 0))
|
||
|
if img_mode is ImageMode.L:
|
||
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
|
||
|
|
||
|
# ------------------- process the alpha channel if necessary ------------------- #
|
||
|
if img_mode is ImageMode.RGBA:
|
||
|
if esrgan_alpha_upscale:
|
||
|
assert alpha is not None
|
||
|
self.pre_process(alpha)
|
||
|
if self.tile_size > 0:
|
||
|
self.tile_process()
|
||
|
else:
|
||
|
self.process()
|
||
|
output_alpha_tensor = self.post_process()
|
||
|
output_alpha: npt.NDArray[Any] = output_alpha_tensor.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||
|
output_alpha = np.transpose(output_alpha[[2, 1, 0], :, :], (1, 2, 0))
|
||
|
output_alpha = cv2.cvtColor(output_alpha, cv2.COLOR_BGR2GRAY)
|
||
|
else: # use the cv2 resize for alpha channel
|
||
|
assert alpha is not None
|
||
|
h, w = alpha.shape[0:2]
|
||
|
output_alpha = cv2.resize(
|
||
|
alpha,
|
||
|
(w * self.scale, h * self.scale),
|
||
|
interpolation=cv2.INTER_LINEAR,
|
||
|
)
|
||
|
|
||
|
# merge the alpha channel
|
||
|
output_img = cv2.cvtColor(output_img, cv2.COLOR_BGR2BGRA)
|
||
|
output_img[:, :, 3] = output_alpha
|
||
|
|
||
|
# ------------------------------ return ------------------------------ #
|
||
|
if max_range == 65535: # 16-bit image
|
||
|
output = (output_img * 65535.0).round().astype(np.uint16)
|
||
|
else:
|
||
|
output = (output_img * 255.0).round().astype(np.uint8)
|
||
|
|
||
|
return output
|