2023-03-03 06:02:00 +00:00
|
|
|
"""
|
2023-02-28 05:37:13 +00:00
|
|
|
invokeai.backend.generator.txt2img inherits from invokeai.backend.generator
|
2023-03-03 06:02:00 +00:00
|
|
|
"""
|
2023-02-28 05:37:13 +00:00
|
|
|
import PIL.Image
|
|
|
|
import torch
|
|
|
|
|
2023-04-29 07:51:04 +00:00
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
from diffusers.models.controlnet import ControlNetModel, ControlNetOutput
|
2023-06-07 16:42:52 +00:00
|
|
|
from diffusers.pipelines.controlnet import MultiControlNetModel
|
2023-04-29 07:51:04 +00:00
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
from ..stable_diffusion import (
|
|
|
|
ConditioningData,
|
|
|
|
PostprocessingSettings,
|
|
|
|
StableDiffusionGeneratorPipeline,
|
|
|
|
)
|
2023-02-28 05:37:13 +00:00
|
|
|
from .base import Generator
|
2023-03-03 06:02:00 +00:00
|
|
|
|
2023-02-28 05:37:13 +00:00
|
|
|
|
|
|
|
class Txt2Img(Generator):
|
2023-04-29 07:51:04 +00:00
|
|
|
def __init__(self, model, precision,
|
|
|
|
control_model: Optional[Union[ControlNetModel, List[ControlNetModel]]] = None,
|
|
|
|
**kwargs):
|
|
|
|
self.control_model = control_model
|
|
|
|
if isinstance(self.control_model, list):
|
|
|
|
self.control_model = MultiControlNetModel(self.control_model)
|
|
|
|
super().__init__(model, precision, **kwargs)
|
2023-02-28 05:37:13 +00:00
|
|
|
|
|
|
|
@torch.no_grad()
|
2023-03-03 06:02:00 +00:00
|
|
|
def get_make_image(
|
|
|
|
self,
|
|
|
|
prompt,
|
|
|
|
sampler,
|
|
|
|
steps,
|
|
|
|
cfg_scale,
|
|
|
|
ddim_eta,
|
|
|
|
conditioning,
|
|
|
|
width,
|
|
|
|
height,
|
|
|
|
step_callback=None,
|
|
|
|
threshold=0.0,
|
|
|
|
warmup=0.2,
|
|
|
|
perlin=0.0,
|
|
|
|
h_symmetry_time_pct=None,
|
|
|
|
v_symmetry_time_pct=None,
|
|
|
|
attention_maps_callback=None,
|
|
|
|
**kwargs,
|
|
|
|
):
|
2023-02-28 05:37:13 +00:00
|
|
|
"""
|
|
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
|
|
Return value depends on the seed at the time you call it
|
|
|
|
kwargs are 'width' and 'height'
|
|
|
|
"""
|
|
|
|
self.perlin = perlin
|
2023-04-29 07:51:04 +00:00
|
|
|
control_image = kwargs.get("control_image", None)
|
|
|
|
do_classifier_free_guidance = cfg_scale > 1.0
|
2023-02-28 05:37:13 +00:00
|
|
|
|
|
|
|
# noinspection PyTypeChecker
|
|
|
|
pipeline: StableDiffusionGeneratorPipeline = self.model
|
2023-04-29 07:51:04 +00:00
|
|
|
pipeline.control_model = self.control_model
|
2023-02-28 05:37:13 +00:00
|
|
|
pipeline.scheduler = sampler
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
uc, c, extra_conditioning_info = conditioning
|
|
|
|
conditioning_data = ConditioningData(
|
|
|
|
uc,
|
|
|
|
c,
|
|
|
|
cfg_scale,
|
|
|
|
extra_conditioning_info,
|
|
|
|
postprocessing_settings=PostprocessingSettings(
|
|
|
|
threshold=threshold,
|
|
|
|
warmup=warmup,
|
|
|
|
h_symmetry_time_pct=h_symmetry_time_pct,
|
|
|
|
v_symmetry_time_pct=v_symmetry_time_pct,
|
|
|
|
),
|
|
|
|
).add_scheduler_args_if_applicable(pipeline.scheduler, eta=ddim_eta)
|
2023-02-28 05:37:13 +00:00
|
|
|
|
2023-04-29 07:51:04 +00:00
|
|
|
# FIXME: still need to test with different widths, heights, devices, dtypes
|
|
|
|
# and add in batch_size, num_images_per_prompt?
|
|
|
|
if control_image is not None:
|
|
|
|
if isinstance(self.control_model, ControlNetModel):
|
|
|
|
control_image = pipeline.prepare_control_image(
|
|
|
|
image=control_image,
|
|
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
|
|
width=width,
|
|
|
|
height=height,
|
|
|
|
# batch_size=batch_size * num_images_per_prompt,
|
|
|
|
# num_images_per_prompt=num_images_per_prompt,
|
|
|
|
device=self.control_model.device,
|
|
|
|
dtype=self.control_model.dtype,
|
|
|
|
)
|
|
|
|
elif isinstance(self.control_model, MultiControlNetModel):
|
|
|
|
images = []
|
|
|
|
for image_ in control_image:
|
|
|
|
image_ = self.model.prepare_control_image(
|
|
|
|
image=image_,
|
|
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
|
|
width=width,
|
|
|
|
height=height,
|
|
|
|
# batch_size=batch_size * num_images_per_prompt,
|
|
|
|
# num_images_per_prompt=num_images_per_prompt,
|
|
|
|
device=self.control_model.device,
|
|
|
|
dtype=self.control_model.dtype,
|
|
|
|
)
|
|
|
|
images.append(image_)
|
|
|
|
control_image = images
|
|
|
|
kwargs["control_image"] = control_image
|
|
|
|
|
2023-03-13 13:11:09 +00:00
|
|
|
def make_image(x_T: torch.Tensor, _: int) -> PIL.Image.Image:
|
2023-02-28 05:37:13 +00:00
|
|
|
pipeline_output = pipeline.image_from_embeddings(
|
2023-03-03 06:02:00 +00:00
|
|
|
latents=torch.zeros_like(x_T, dtype=self.torch_dtype()),
|
2023-02-28 05:37:13 +00:00
|
|
|
noise=x_T,
|
|
|
|
num_inference_steps=steps,
|
|
|
|
conditioning_data=conditioning_data,
|
|
|
|
callback=step_callback,
|
2023-04-29 07:51:04 +00:00
|
|
|
**kwargs,
|
2023-02-28 05:37:13 +00:00
|
|
|
)
|
|
|
|
|
2023-03-03 06:02:00 +00:00
|
|
|
if (
|
|
|
|
pipeline_output.attention_map_saver is not None
|
|
|
|
and attention_maps_callback is not None
|
|
|
|
):
|
2023-02-28 05:37:13 +00:00
|
|
|
attention_maps_callback(pipeline_output.attention_map_saver)
|
|
|
|
|
|
|
|
return pipeline.numpy_to_pil(pipeline_output.images)[0]
|
|
|
|
|
|
|
|
return make_image
|