InvokeAI/invokeai/backend/stable_diffusion/data/personalized.py

200 lines
5.4 KiB
Python
Raw Normal View History

2022-08-23 22:26:28 +00:00
import os
2023-03-03 06:02:00 +00:00
import random
2022-08-23 22:26:28 +00:00
import numpy as np
import PIL
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
imagenet_templates_smallest = [
2023-03-03 06:02:00 +00:00
"a photo of a {}",
2022-08-23 22:26:28 +00:00
]
imagenet_templates_small = [
2023-03-03 06:02:00 +00:00
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
2022-08-23 22:26:28 +00:00
]
imagenet_dual_templates_small = [
2023-03-03 06:02:00 +00:00
"a photo of a {} with {}",
"a rendering of a {} with {}",
"a cropped photo of the {} with {}",
"the photo of a {} with {}",
"a photo of a clean {} with {}",
"a photo of a dirty {} with {}",
"a dark photo of the {} with {}",
"a photo of my {} with {}",
"a photo of the cool {} with {}",
"a close-up photo of a {} with {}",
"a bright photo of the {} with {}",
"a cropped photo of a {} with {}",
"a photo of the {} with {}",
"a good photo of the {} with {}",
"a photo of one {} with {}",
"a close-up photo of the {} with {}",
"a rendition of the {} with {}",
"a photo of the clean {} with {}",
"a rendition of a {} with {}",
"a photo of a nice {} with {}",
"a good photo of a {} with {}",
"a photo of the nice {} with {}",
"a photo of the small {} with {}",
"a photo of the weird {} with {}",
"a photo of the large {} with {}",
"a photo of a cool {} with {}",
"a photo of a small {} with {}",
2022-08-23 22:26:28 +00:00
]
per_img_token_list = [
2023-03-03 06:02:00 +00:00
"א",
"ב",
"ג",
"ד",
"ה",
"ו",
"ז",
"ח",
"ט",
"י",
"כ",
"ל",
"מ",
"נ",
"ס",
"ע",
"פ",
"צ",
"ק",
"ר",
"ש",
"ת",
2022-08-23 22:26:28 +00:00
]
2022-08-23 22:26:28 +00:00
class PersonalizedBase(Dataset):
def __init__(
self,
data_root,
size=None,
repeats=100,
2023-03-03 06:02:00 +00:00
interpolation="bicubic",
flip_p=0.5,
2023-03-03 06:02:00 +00:00
set="train",
placeholder_token="*",
per_image_tokens=False,
center_crop=False,
mixing_prob=0.25,
coarse_class_text=None,
):
2022-08-23 22:26:28 +00:00
self.data_root = data_root
self.image_paths = [
os.path.join(self.data_root, file_path)
2023-03-03 06:02:00 +00:00
for file_path in os.listdir(self.data_root)
if file_path != ".DS_Store"
]
2022-08-23 22:26:28 +00:00
# self._length = len(self.image_paths)
self.num_images = len(self.image_paths)
self._length = self.num_images
2022-08-23 22:26:28 +00:00
self.placeholder_token = placeholder_token
self.per_image_tokens = per_image_tokens
self.center_crop = center_crop
self.mixing_prob = mixing_prob
self.coarse_class_text = coarse_class_text
if per_image_tokens:
assert self.num_images < len(
per_img_token_list
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
2022-08-23 22:26:28 +00:00
2023-03-03 06:02:00 +00:00
if set == "train":
2022-08-23 22:26:28 +00:00
self._length = self.num_images * repeats
self.size = size
self.interpolation = {
2023-03-03 06:02:00 +00:00
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
2022-08-23 22:26:28 +00:00
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
2023-03-03 06:02:00 +00:00
if not image.mode == "RGB":
image = image.convert("RGB")
2022-08-23 22:26:28 +00:00
placeholder_string = self.placeholder_token
if self.coarse_class_text:
2023-03-03 06:02:00 +00:00
placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
2022-08-23 22:26:28 +00:00
if self.per_image_tokens and np.random.uniform() < self.mixing_prob:
text = random.choice(imagenet_dual_templates_small).format(
placeholder_string, per_img_token_list[i % self.num_images]
)
2022-08-23 22:26:28 +00:00
else:
2023-03-03 06:02:00 +00:00
text = random.choice(imagenet_templates_small).format(placeholder_string)
2023-03-03 06:02:00 +00:00
example["caption"] = text
2022-08-23 22:26:28 +00:00
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
2022-08-23 22:26:28 +00:00
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
2023-03-03 06:02:00 +00:00
(
h,
w,
) = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2,
(w - crop) // 2 : (w + crop) // 2,
]
2022-08-23 22:26:28 +00:00
image = Image.fromarray(img)
if self.size is not None:
2023-03-03 06:02:00 +00:00
image = image.resize((self.size, self.size), resample=self.interpolation)
2022-08-23 22:26:28 +00:00
image = self.flip(image)
image = np.array(image).astype(np.uint8)
2023-03-03 06:02:00 +00:00
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
return example