InvokeAI/invokeai/backend/util/mps_fixes.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

246 lines
8.1 KiB
Python
Raw Normal View History

import math
2023-09-01 22:51:53 +00:00
import diffusers
import torch
if torch.backends.mps.is_available():
torch.empty = torch.zeros
_torch_layer_norm = torch.nn.functional.layer_norm
2023-07-27 14:54:01 +00:00
def new_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-05):
if input.device.type == "mps" and input.dtype == torch.float16:
input = input.float()
if weight is not None:
weight = weight.float()
if bias is not None:
bias = bias.float()
return _torch_layer_norm(input, normalized_shape, weight, bias, eps).half()
else:
return _torch_layer_norm(input, normalized_shape, weight, bias, eps)
2023-07-27 14:54:01 +00:00
torch.nn.functional.layer_norm = new_layer_norm
_torch_tensor_permute = torch.Tensor.permute
2023-07-27 14:54:01 +00:00
def new_torch_tensor_permute(input, *dims):
result = _torch_tensor_permute(input, *dims)
if input.device == "mps" and input.dtype == torch.float16:
result = result.contiguous()
return result
2023-07-27 14:54:01 +00:00
torch.Tensor.permute = new_torch_tensor_permute
_torch_lerp = torch.lerp
2023-07-27 14:54:01 +00:00
def new_torch_lerp(input, end, weight, *, out=None):
if input.device.type == "mps" and input.dtype == torch.float16:
input = input.float()
end = end.float()
if isinstance(weight, torch.Tensor):
weight = weight.float()
if out is not None:
out_fp32 = torch.zeros_like(out, dtype=torch.float32)
else:
out_fp32 = None
result = _torch_lerp(input, end, weight, out=out_fp32)
if out is not None:
out.copy_(out_fp32.half())
del out_fp32
return result.half()
else:
return _torch_lerp(input, end, weight, out=out)
2023-07-27 14:54:01 +00:00
torch.lerp = new_torch_lerp
_torch_interpolate = torch.nn.functional.interpolate
2023-07-27 14:54:01 +00:00
def new_torch_interpolate(
input,
size=None,
scale_factor=None,
mode="nearest",
align_corners=None,
recompute_scale_factor=None,
antialias=False,
):
if input.device.type == "mps" and input.dtype == torch.float16:
return _torch_interpolate(
input.float(), size, scale_factor, mode, align_corners, recompute_scale_factor, antialias
).half()
else:
return _torch_interpolate(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias)
2023-07-27 14:54:01 +00:00
torch.nn.functional.interpolate = new_torch_interpolate
# TODO: refactor it
_SlicedAttnProcessor = diffusers.models.attention_processor.SlicedAttnProcessor
2023-07-27 14:54:01 +00:00
class ChunkedSlicedAttnProcessor:
r"""
Processor for implementing sliced attention.
Args:
slice_size (`int`, *optional*):
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
`attention_head_dim` must be a multiple of the `slice_size`.
"""
def __init__(self, slice_size):
assert isinstance(slice_size, int)
slice_size = 1 # TODO: maybe implement chunking in batches too when enough memory
self.slice_size = slice_size
self._sliced_attn_processor = _SlicedAttnProcessor(slice_size)
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None):
2023-07-21 11:52:12 +00:00
if self.slice_size != 1 or attn.upcast_attention:
return self._sliced_attn_processor(attn, hidden_states, encoder_hidden_states, attention_mask)
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
dim = query.shape[-1]
query = attn.head_to_batch_dim(query)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
batch_size_attention, query_tokens, _ = query.shape
hidden_states = torch.zeros(
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
)
chunk_tmp_tensor = torch.empty(
self.slice_size, query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
)
for i in range(batch_size_attention // self.slice_size):
start_idx = i * self.slice_size
end_idx = (i + 1) * self.slice_size
query_slice = query[start_idx:end_idx]
key_slice = key[start_idx:end_idx]
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
self.get_attention_scores_chunked(
attn,
query_slice,
key_slice,
attn_mask_slice,
hidden_states[start_idx:end_idx],
value[start_idx:end_idx],
chunk_tmp_tensor,
)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def get_attention_scores_chunked(self, attn, query, key, attention_mask, hidden_states, value, chunk):
# batch size = 1
assert query.shape[0] == 1
assert key.shape[0] == 1
assert value.shape[0] == 1
assert hidden_states.shape[0] == 1
2023-08-17 22:45:25 +00:00
# dtype = query.dtype
if attn.upcast_attention:
query = query.float()
key = key.float()
# out_item_size = query.dtype.itemsize
# if attn.upcast_attention:
# out_item_size = torch.float32.itemsize
out_item_size = query.element_size()
if attn.upcast_attention:
out_item_size = 4
chunk_size = 2 ** 29
out_size = query.shape[1] * key.shape[1] * out_item_size
chunks_count = min(query.shape[1], math.ceil((out_size - 1) / chunk_size))
chunk_step = max(1, int(query.shape[1] / chunks_count))
key = key.transpose(-1, -2)
def _get_chunk_view(tensor, start, length):
if start + length > tensor.shape[1]:
length = tensor.shape[1] - start
# print(f"view: [{tensor.shape[0]},{tensor.shape[1]},{tensor.shape[2]}] - start: {start}, length: {length}")
return tensor[:, start : start + length]
for chunk_pos in range(0, query.shape[1], chunk_step):
if attention_mask is not None:
torch.baddbmm(
_get_chunk_view(attention_mask, chunk_pos, chunk_step),
_get_chunk_view(query, chunk_pos, chunk_step),
key,
beta=1,
alpha=attn.scale,
out=chunk,
)
else:
torch.baddbmm(
torch.zeros((1, 1, 1), device=query.device, dtype=query.dtype),
_get_chunk_view(query, chunk_pos, chunk_step),
key,
beta=0,
alpha=attn.scale,
out=chunk,
)
chunk = chunk.softmax(dim=-1)
torch.bmm(chunk, value, out=_get_chunk_view(hidden_states, chunk_pos, chunk_step))
# del chunk
diffusers.models.attention_processor.SlicedAttnProcessor = ChunkedSlicedAttnProcessor