InvokeAI/tests/backend/util/test_devices.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

133 lines
4.8 KiB
Python
Raw Normal View History

"""
Test abstract device class.
"""
from unittest.mock import patch
import pytest
import torch
from invokeai.app.services.config import get_config
from invokeai.backend.util.devices import TorchDevice, choose_precision, choose_torch_device, torch_dtype
devices = ["cpu", "cuda:0", "cuda:1", "mps"]
device_types_cpu = [("cpu", torch.float32), ("cuda:0", torch.float32), ("mps", torch.float32)]
device_types_cuda = [("cpu", torch.float32), ("cuda:0", torch.float16), ("mps", torch.float32)]
device_types_mps = [("cpu", torch.float32), ("cuda:0", torch.float32), ("mps", torch.float16)]
@pytest.mark.parametrize("device_name", devices)
def test_device_choice(device_name):
config = get_config()
config.device = device_name
torch_device = TorchDevice.choose_torch_device()
assert torch_device == torch.device(device_name)
@pytest.mark.parametrize("device_dtype_pair", device_types_cpu)
def test_device_dtype_cpu(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=False),
patch("torch.backends.mps.is_available", return_value=False),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == dtype
@pytest.mark.parametrize("device_dtype_pair", device_types_cuda)
def test_device_dtype_cuda(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=True),
patch("torch.cuda.get_device_name", return_value="RTX4070"),
patch("torch.backends.mps.is_available", return_value=False),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == dtype
@pytest.mark.parametrize("device_dtype_pair", device_types_mps)
def test_device_dtype_mps(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=False),
patch("torch.backends.mps.is_available", return_value=True),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == dtype
@pytest.mark.parametrize("device_dtype_pair", device_types_cuda)
def test_device_dtype_override(device_dtype_pair):
with (
patch("torch.cuda.get_device_name", return_value="RTX4070"),
patch("torch.cuda.is_available", return_value=True),
patch("torch.backends.mps.is_available", return_value=False),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
config.precision = "float32"
torch_dtype = TorchDevice.choose_torch_dtype()
assert torch_dtype == torch.float32
def test_normalize():
assert (
TorchDevice.normalize("cuda") == torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cuda")
)
assert (
TorchDevice.normalize("cuda:0") == torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cuda")
)
assert (
TorchDevice.normalize("cuda:1") == torch.device("cuda:1") if torch.cuda.is_available() else torch.device("cuda")
)
assert TorchDevice.normalize("mps") == torch.device("mps")
assert TorchDevice.normalize("cpu") == torch.device("cpu")
@pytest.mark.parametrize("device_name", devices)
def test_legacy_device_choice(device_name):
config = get_config()
config.device = device_name
with pytest.deprecated_call():
torch_device = choose_torch_device()
assert torch_device == torch.device(device_name)
@pytest.mark.parametrize("device_dtype_pair", device_types_cpu)
def test_legacy_device_dtype_cpu(device_dtype_pair):
with (
patch("torch.cuda.is_available", return_value=False),
patch("torch.backends.mps.is_available", return_value=False),
patch("torch.cuda.get_device_name", return_value="RTX9090"),
):
device_name, dtype = device_dtype_pair
config = get_config()
config.device = device_name
with pytest.deprecated_call():
torch_device = choose_torch_device()
returned_dtype = torch_dtype(torch_device)
assert returned_dtype == dtype
def test_legacy_precision_name():
config = get_config()
config.precision = "auto"
with (
pytest.deprecated_call(),
patch("torch.cuda.is_available", return_value=True),
patch("torch.backends.mps.is_available", return_value=True),
patch("torch.cuda.get_device_name", return_value="RTX9090"),
):
assert "float16" == choose_precision(torch.device("cuda"))
assert "float16" == choose_precision(torch.device("mps"))
assert "float32" == choose_precision(torch.device("cpu"))