InvokeAI/invokeai/app/invocations/metadata.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

186 lines
7.2 KiB
Python
Raw Normal View History

from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationConfig,
InvocationContext,
)
from invokeai.app.invocations.controlnet_image_processors import ControlField
from invokeai.app.invocations.model import LoRAModelField, MainModelField, VAEModelField
class LoRAMetadataField(BaseModel):
"""LoRA metadata for an image generated in InvokeAI."""
lora: LoRAModelField = Field(description="The LoRA model")
weight: float = Field(description="The weight of the LoRA model")
class CoreMetadata(BaseModel):
"""Core generation metadata for an image generated in InvokeAI."""
generation_mode: str = Field(
description="The generation mode that output this image",
)
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
height: int = Field(description="The height parameter")
seed: int = Field(description="The seed used for noise generation")
rand_device: str = Field(description="The device used for random number generation")
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: int = Field(
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field(
description="The ControlNets used for inference"
)
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
vae: Union[VAEModelField, None] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# Latents-to-Latents
strength: Union[float, None] = Field(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Union[str, None] = Field(
default=None, description="The name of the initial image"
)
# SDXL
positive_style_prompt: Union[str, None] = Field(
default=None, description="The positive style prompt parameter"
)
negative_style_prompt: Union[str, None] = Field(
default=None, description="The negative style prompt parameter"
)
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(
default=None, description="The SDXL Refiner model used"
)
refiner_cfg_scale: Union[float, None] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(
default=None, description="The number of steps used for the refiner"
)
refiner_scheduler: Union[str, None] = Field(
default=None, description="The scheduler used for the refiner"
)
refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Union[float, None] = Field(
default=None, description="The start value used for refiner denoising"
)
class ImageMetadata(BaseModel):
"""An image's generation metadata"""
metadata: Optional[dict] = Field(
default=None,
description="The image's core metadata, if it was created in the Linear or Canvas UI",
)
graph: Optional[dict] = Field(
default=None, description="The graph that created the image"
)
class MetadataAccumulatorOutput(BaseInvocationOutput):
"""The output of the MetadataAccumulator node"""
type: Literal["metadata_accumulator_output"] = "metadata_accumulator_output"
metadata: CoreMetadata = Field(description="The core metadata for the image")
class MetadataAccumulatorInvocation(BaseInvocation):
"""Outputs a Core Metadata Object"""
type: Literal["metadata_accumulator"] = "metadata_accumulator"
generation_mode: str = Field(
description="The generation mode that output this image",
)
positive_prompt: str = Field(description="The positive prompt parameter")
negative_prompt: str = Field(description="The negative prompt parameter")
width: int = Field(description="The width parameter")
height: int = Field(description="The height parameter")
seed: int = Field(description="The seed used for noise generation")
rand_device: str = Field(description="The device used for random number generation")
cfg_scale: float = Field(description="The classifier-free guidance scale parameter")
steps: int = Field(description="The number of steps used for inference")
scheduler: str = Field(description="The scheduler used for inference")
clip_skip: int = Field(
description="The number of skipped CLIP layers",
)
model: MainModelField = Field(description="The main model used for inference")
controlnets: list[ControlField] = Field(
description="The ControlNets used for inference"
)
loras: list[LoRAMetadataField] = Field(description="The LoRAs used for inference")
strength: Union[float, None] = Field(
default=None,
description="The strength used for latents-to-latents",
)
init_image: Union[str, None] = Field(
default=None, description="The name of the initial image"
)
vae: Union[VAEModelField, None] = Field(
default=None,
description="The VAE used for decoding, if the main model's default was not used",
)
# SDXL
positive_style_prompt: Union[str, None] = Field(
default=None, description="The positive style prompt parameter"
)
negative_style_prompt: Union[str, None] = Field(
default=None, description="The negative style prompt parameter"
)
# SDXL Refiner
refiner_model: Union[MainModelField, None] = Field(
default=None, description="The SDXL Refiner model used"
)
refiner_cfg_scale: Union[float, None] = Field(
default=None,
description="The classifier-free guidance scale parameter used for the refiner",
)
refiner_steps: Union[int, None] = Field(
default=None, description="The number of steps used for the refiner"
)
refiner_scheduler: Union[str, None] = Field(
default=None, description="The scheduler used for the refiner"
)
refiner_aesthetic_store: Union[float, None] = Field(
default=None, description="The aesthetic score used for the refiner"
)
refiner_start: Union[float, None] = Field(
default=None, description="The start value used for refiner denoising"
)
2023-07-18 14:26:45 +00:00
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Metadata Accumulator",
"tags": ["image", "metadata", "generation"],
2023-07-18 14:26:45 +00:00
},
}
def invoke(self, context: InvocationContext) -> MetadataAccumulatorOutput:
"""Collects and outputs a CoreMetadata object"""
return MetadataAccumulatorOutput(metadata=CoreMetadata(**self.dict()))