mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
99 lines
3.7 KiB
Python
99 lines
3.7 KiB
Python
|
from typing import Any, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import numpy.typing as npt
|
||
|
import torch
|
||
|
|
||
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||
|
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, LatentsField
|
||
|
from invokeai.app.invocations.primitives import LatentsOutput
|
||
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||
|
from invokeai.backend.util.devices import TorchDevice
|
||
|
|
||
|
|
||
|
@invocation(
|
||
|
"lblend",
|
||
|
title="Blend Latents",
|
||
|
tags=["latents", "blend"],
|
||
|
category="latents",
|
||
|
version="1.0.3",
|
||
|
)
|
||
|
class BlendLatentsInvocation(BaseInvocation):
|
||
|
"""Blend two latents using a given alpha. Latents must have same size."""
|
||
|
|
||
|
latents_a: LatentsField = InputField(
|
||
|
description=FieldDescriptions.latents,
|
||
|
input=Input.Connection,
|
||
|
)
|
||
|
latents_b: LatentsField = InputField(
|
||
|
description=FieldDescriptions.latents,
|
||
|
input=Input.Connection,
|
||
|
)
|
||
|
alpha: float = InputField(default=0.5, description=FieldDescriptions.blend_alpha)
|
||
|
|
||
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||
|
latents_a = context.tensors.load(self.latents_a.latents_name)
|
||
|
latents_b = context.tensors.load(self.latents_b.latents_name)
|
||
|
|
||
|
if latents_a.shape != latents_b.shape:
|
||
|
raise Exception("Latents to blend must be the same size.")
|
||
|
|
||
|
device = TorchDevice.choose_torch_device()
|
||
|
|
||
|
def slerp(
|
||
|
t: Union[float, npt.NDArray[Any]], # FIXME: maybe use np.float32 here?
|
||
|
v0: Union[torch.Tensor, npt.NDArray[Any]],
|
||
|
v1: Union[torch.Tensor, npt.NDArray[Any]],
|
||
|
DOT_THRESHOLD: float = 0.9995,
|
||
|
) -> Union[torch.Tensor, npt.NDArray[Any]]:
|
||
|
"""
|
||
|
Spherical linear interpolation
|
||
|
Args:
|
||
|
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||
|
v0 (np.ndarray): Starting vector
|
||
|
v1 (np.ndarray): Final vector
|
||
|
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||
|
colineal. Not recommended to alter this.
|
||
|
Returns:
|
||
|
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||
|
"""
|
||
|
inputs_are_torch = False
|
||
|
if not isinstance(v0, np.ndarray):
|
||
|
inputs_are_torch = True
|
||
|
v0 = v0.detach().cpu().numpy()
|
||
|
if not isinstance(v1, np.ndarray):
|
||
|
inputs_are_torch = True
|
||
|
v1 = v1.detach().cpu().numpy()
|
||
|
|
||
|
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||
|
if np.abs(dot) > DOT_THRESHOLD:
|
||
|
v2 = (1 - t) * v0 + t * v1
|
||
|
else:
|
||
|
theta_0 = np.arccos(dot)
|
||
|
sin_theta_0 = np.sin(theta_0)
|
||
|
theta_t = theta_0 * t
|
||
|
sin_theta_t = np.sin(theta_t)
|
||
|
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||
|
s1 = sin_theta_t / sin_theta_0
|
||
|
v2 = s0 * v0 + s1 * v1
|
||
|
|
||
|
if inputs_are_torch:
|
||
|
v2_torch: torch.Tensor = torch.from_numpy(v2).to(device)
|
||
|
return v2_torch
|
||
|
else:
|
||
|
assert isinstance(v2, np.ndarray)
|
||
|
return v2
|
||
|
|
||
|
# blend
|
||
|
bl = slerp(self.alpha, latents_a, latents_b)
|
||
|
assert isinstance(bl, torch.Tensor)
|
||
|
blended_latents: torch.Tensor = bl # for type checking convenience
|
||
|
|
||
|
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
|
||
|
blended_latents = blended_latents.to("cpu")
|
||
|
|
||
|
TorchDevice.empty_cache()
|
||
|
|
||
|
name = context.tensors.save(tensor=blended_latents)
|
||
|
return LatentsOutput.build(latents_name=name, latents=blended_latents, seed=self.latents_a.seed)
|