InvokeAI/invokeai/backend/stable_diffusion/diffusion_backend.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

195 lines
7.5 KiB
Python
Raw Normal View History

2024-07-12 17:31:26 +00:00
from __future__ import annotations
import torch
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.schedulers.scheduling_utils import SchedulerMixin, SchedulerOutput
from tqdm.auto import tqdm
from invokeai.app.services.config.config_default import get_config
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, UNetKwargs
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
class StableDiffusionBackend:
def __init__(
self,
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
):
self.unet = unet
self.scheduler = scheduler
config = get_config()
self.sequential_guidance = config.sequential_guidance
def latents_from_embeddings(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
if ctx.init_timestep.shape[0] == 0:
return ctx.latents
ctx.orig_latents = ctx.latents.clone()
if ctx.noise is not None:
batch_size = ctx.latents.shape[0]
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
ctx.latents = ctx.scheduler.add_noise(ctx.latents, ctx.noise, ctx.init_timestep.expand(batch_size))
# if no work to do, return latents
if ctx.timesteps.shape[0] == 0:
return ctx.latents
# ext: inpaint[pre_denoise_loop, priority=normal] (maybe init, but not sure if it needed)
# ext: preview[pre_denoise_loop, priority=low]
ext_manager.callbacks.pre_denoise_loop(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
for ctx.step_index, ctx.timestep in enumerate(tqdm(ctx.timesteps)): # noqa: B020
# ext: inpaint (apply mask to latents on non-inpaint models)
ext_manager.callbacks.pre_step(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
# ext: tiles? [override: step]
ctx.step_output = ext_manager.overrides.step(self.step, ctx, ext_manager)
# ext: inpaint[post_step, priority=high] (apply mask to preview on non-inpaint models)
# ext: preview[post_step, priority=low]
ext_manager.callbacks.post_step(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
ctx.latents = ctx.step_output.prev_sample
# ext: inpaint[post_denoise_loop] (restore unmasked part)
ext_manager.callbacks.post_denoise_loop(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
return ctx.latents
@torch.inference_mode()
def step(self, ctx: DenoiseContext, ext_manager: ExtensionsManager) -> SchedulerOutput:
ctx.latent_model_input = ctx.scheduler.scale_model_input(ctx.latents, ctx.timestep)
if self.sequential_guidance:
conditioning_call = self._apply_standard_conditioning_sequentially
else:
conditioning_call = self._apply_standard_conditioning
# not sure if here needed override
ctx.negative_noise_pred, ctx.positive_noise_pred = conditioning_call(ctx, ext_manager)
# ext: override apply_cfg
ctx.noise_pred = ext_manager.overrides.apply_cfg(self.apply_cfg, ctx)
2024-07-12 17:31:26 +00:00
# ext: cfg_rescale [modify_noise_prediction]
ext_manager.callbacks.modify_noise_prediction(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
# compute the previous noisy sample x_t -> x_t-1
step_output = ctx.scheduler.step(ctx.noise_pred, ctx.timestep, ctx.latents, **ctx.scheduler_step_kwargs)
# del locals
del ctx.latent_model_input
del ctx.negative_noise_pred
del ctx.positive_noise_pred
del ctx.noise_pred
return step_output
@staticmethod
def apply_cfg(ctx: DenoiseContext) -> torch.Tensor:
2024-07-12 17:31:26 +00:00
guidance_scale = ctx.conditioning_data.guidance_scale
if isinstance(guidance_scale, list):
guidance_scale = guidance_scale[ctx.step_index]
return torch.lerp(ctx.negative_noise_pred, ctx.positive_noise_pred, guidance_scale)
# return ctx.negative_noise_pred + guidance_scale * (ctx.positive_noise_pred - ctx.negative_noise_pred)
def _apply_standard_conditioning(
self, ctx: DenoiseContext, ext_manager: ExtensionsManager
) -> tuple[torch.Tensor, torch.Tensor]:
"""Runs the conditioned and unconditioned UNet forward passes in a single batch for faster inference speed at
the cost of higher memory usage.
"""
ctx.unet_kwargs = UNetKwargs(
sample=torch.cat([ctx.latent_model_input] * 2),
timestep=ctx.timestep,
encoder_hidden_states=None, # set later by conditoning
cross_attention_kwargs=dict( # noqa: C408
percent_through=ctx.step_index / len(ctx.timesteps), # ctx.total_steps,
),
)
ctx.conditioning_mode = "both"
ctx.conditioning_data.to_unet_kwargs(ctx.unet_kwargs, ctx.conditioning_mode)
# ext: controlnet/ip/t2i [pre_unet_forward]
ext_manager.callbacks.pre_unet_forward(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
# ext: inpaint [pre_unet_forward, priority=low]
# or
# ext: inpaint [override: unet_forward]
both_results = self._unet_forward(**vars(ctx.unet_kwargs))
negative_next_x, positive_next_x = both_results.chunk(2)
# del locals
del ctx.unet_kwargs
del ctx.conditioning_mode
return negative_next_x, positive_next_x
def _apply_standard_conditioning_sequentially(self, ctx: DenoiseContext, ext_manager: ExtensionsManager):
"""Runs the conditioned and unconditioned UNet forward passes sequentially for lower memory usage at the cost of
slower execution speed.
"""
###################
# Negative pass
###################
ctx.unet_kwargs = UNetKwargs(
sample=ctx.latent_model_input,
timestep=ctx.timestep,
encoder_hidden_states=None, # set later by conditoning
cross_attention_kwargs=dict( # noqa: C408
percent_through=ctx.step_index / len(ctx.timesteps), # ctx.total_steps,
),
)
ctx.conditioning_mode = "negative"
ctx.conditioning_data.to_unet_kwargs(ctx.unet_kwargs, "negative")
# ext: controlnet/ip/t2i [pre_unet_forward]
ext_manager.callbacks.pre_unet_forward(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
# ext: inpaint [pre_unet_forward, priority=low]
# or
# ext: inpaint [override: unet_forward]
negative_next_x = self._unet_forward(**vars(ctx.unet_kwargs))
del ctx.unet_kwargs
del ctx.conditioning_mode
# TODO: gc.collect() ?
###################
# Positive pass
###################
ctx.unet_kwargs = UNetKwargs(
sample=ctx.latent_model_input,
timestep=ctx.timestep,
encoder_hidden_states=None, # set later by conditoning
cross_attention_kwargs=dict( # noqa: C408
percent_through=ctx.step_index / len(ctx.timesteps), # ctx.total_steps,
),
)
ctx.conditioning_mode = "positive"
ctx.conditioning_data.to_unet_kwargs(ctx.unet_kwargs, "positive")
# ext: controlnet/ip/t2i [pre_unet_forward]
ext_manager.callbacks.pre_unet_forward(ctx, ext_manager)
2024-07-12 17:31:26 +00:00
# ext: inpaint [pre_unet_forward, priority=low]
# or
# ext: inpaint [override: unet_forward]
positive_next_x = self._unet_forward(**vars(ctx.unet_kwargs))
del ctx.unet_kwargs
del ctx.conditioning_mode
# TODO: gc.collect() ?
return negative_next_x, positive_next_x
def _unet_forward(self, **kwargs) -> torch.Tensor:
return self.unet(**kwargs).sample