2024-06-14 18:35:48 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
from contextlib import nullcontext
|
|
|
|
from typing import Any, Callable, List, Optional
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
2024-06-14 22:08:11 +00:00
|
|
|
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
|
|
|
AddsMaskGuidance,
|
|
|
|
ControlNetData,
|
|
|
|
PipelineIntermediateState,
|
|
|
|
StableDiffusionGeneratorPipeline,
|
|
|
|
T2IAdapterData,
|
|
|
|
is_inpainting_model,
|
|
|
|
)
|
2024-06-14 18:35:48 +00:00
|
|
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
|
|
|
|
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
|
|
|
|
|
|
|
|
|
|
|
|
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
|
|
|
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
|
|
|
|
|
2024-06-14 22:08:11 +00:00
|
|
|
# Plan:
|
|
|
|
# - latents_from_embeddings(...) will accept all of the same global params, but the "local" params will be bundled
|
|
|
|
# together with tile locations.
|
|
|
|
# - What is "local"?:
|
|
|
|
# - conditioning_data could be local, but for upscaling will be global
|
|
|
|
# - control_data makes more sense as global, then we split it up as we split up the latents
|
|
|
|
# - ip_adapter_data sort of has 3 modes to consider:
|
|
|
|
# - global style: applied in the same way to all tiles
|
|
|
|
# - local style: apply different IP-Adapters to each tile
|
|
|
|
# - global structure: we want to crop the input image and run the IP-Adapter on each separately
|
|
|
|
# - t2i_adapter_data won't be supported at first - it's not popular enough
|
|
|
|
# - All the inpainting params are global and need to be cropped accordingly
|
|
|
|
# - Local:
|
|
|
|
# - latents
|
|
|
|
# - conditioning_data
|
|
|
|
# - noise
|
|
|
|
# - control_data
|
|
|
|
# - ip_adapter_data (skip for now)
|
|
|
|
# - t2i_adapter_data (skip for now)
|
|
|
|
# - mask
|
|
|
|
# - masked_latents
|
|
|
|
# - is_gradient_mask ???
|
|
|
|
# - Can we support inpainting models in this node?
|
|
|
|
# - TBD, need to think about this more
|
|
|
|
# - step(...) remains mostly unmodified, is not overriden in this sub-class.
|
|
|
|
# - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see.
|
2024-06-14 18:35:48 +00:00
|
|
|
def latents_from_embeddings(
|
|
|
|
self,
|
|
|
|
latents: torch.Tensor,
|
|
|
|
scheduler_step_kwargs: dict[str, Any],
|
|
|
|
conditioning_data: TextConditioningData,
|
|
|
|
noise: Optional[torch.Tensor],
|
|
|
|
seed: int,
|
|
|
|
timesteps: torch.Tensor,
|
|
|
|
init_timestep: torch.Tensor,
|
|
|
|
callback: Callable[[PipelineIntermediateState], None],
|
|
|
|
control_data: list[ControlNetData] | None = None,
|
|
|
|
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
|
|
|
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
|
|
|
mask: Optional[torch.Tensor] = None,
|
|
|
|
masked_latents: Optional[torch.Tensor] = None,
|
|
|
|
is_gradient_mask: bool = False,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle
|
|
|
|
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
|
|
|
|
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
|
|
|
|
return latents
|
|
|
|
|
|
|
|
orig_latents = latents.clone()
|
|
|
|
|
|
|
|
batch_size = latents.shape[0]
|
|
|
|
batched_init_timestep = init_timestep.expand(batch_size)
|
|
|
|
|
|
|
|
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
|
|
|
|
if noise is not None:
|
|
|
|
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
|
|
|
|
# full noise. Investigate the history of why this got commented out.
|
|
|
|
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers
|
|
|
|
latents = self.scheduler.add_noise(latents, noise, batched_init_timestep)
|
|
|
|
|
|
|
|
self._adjust_memory_efficient_attention(latents)
|
|
|
|
|
|
|
|
# Handle mask guidance (a.k.a. inpainting).
|
|
|
|
mask_guidance: AddsMaskGuidance | None = None
|
|
|
|
if mask is not None and not is_inpainting_model(self.unet):
|
|
|
|
# We are doing inpainting, since a mask is provided, but we are not using an inpainting model, so we will
|
|
|
|
# apply mask guidance to the latents.
|
|
|
|
|
|
|
|
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
|
|
|
|
# We still need noise for inpainting, so we generate it from the seed here.
|
|
|
|
if noise is None:
|
|
|
|
noise = torch.randn(
|
|
|
|
orig_latents.shape,
|
|
|
|
dtype=torch.float32,
|
|
|
|
device="cpu",
|
|
|
|
generator=torch.Generator(device="cpu").manual_seed(seed),
|
|
|
|
).to(device=orig_latents.device, dtype=orig_latents.dtype)
|
|
|
|
|
|
|
|
mask_guidance = AddsMaskGuidance(
|
|
|
|
mask=mask,
|
|
|
|
mask_latents=orig_latents,
|
|
|
|
scheduler=self.scheduler,
|
|
|
|
noise=noise,
|
|
|
|
is_gradient_mask=is_gradient_mask,
|
|
|
|
)
|
|
|
|
|
|
|
|
use_ip_adapter = ip_adapter_data is not None
|
|
|
|
use_regional_prompting = (
|
|
|
|
conditioning_data.cond_regions is not None or conditioning_data.uncond_regions is not None
|
|
|
|
)
|
|
|
|
unet_attention_patcher = None
|
|
|
|
attn_ctx = nullcontext()
|
|
|
|
|
|
|
|
if use_ip_adapter or use_regional_prompting:
|
|
|
|
ip_adapters: Optional[List[UNetIPAdapterData]] = (
|
|
|
|
[{"ip_adapter": ipa.ip_adapter_model, "target_blocks": ipa.target_blocks} for ipa in ip_adapter_data]
|
|
|
|
if use_ip_adapter
|
|
|
|
else None
|
|
|
|
)
|
|
|
|
unet_attention_patcher = UNetAttentionPatcher(ip_adapters)
|
|
|
|
attn_ctx = unet_attention_patcher.apply_ip_adapter_attention(self.invokeai_diffuser.model)
|
|
|
|
|
|
|
|
with attn_ctx:
|
|
|
|
callback(
|
|
|
|
PipelineIntermediateState(
|
|
|
|
step=-1,
|
|
|
|
order=self.scheduler.order,
|
|
|
|
total_steps=len(timesteps),
|
|
|
|
timestep=self.scheduler.config.num_train_timesteps,
|
|
|
|
latents=latents,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)):
|
|
|
|
batched_t = t.expand(batch_size)
|
|
|
|
step_output = self.step(
|
|
|
|
t=batched_t,
|
|
|
|
latents=latents,
|
|
|
|
conditioning_data=conditioning_data,
|
|
|
|
step_index=i,
|
|
|
|
total_step_count=len(timesteps),
|
|
|
|
scheduler_step_kwargs=scheduler_step_kwargs,
|
|
|
|
mask_guidance=mask_guidance,
|
|
|
|
mask=mask,
|
|
|
|
masked_latents=masked_latents,
|
|
|
|
control_data=control_data,
|
|
|
|
ip_adapter_data=ip_adapter_data,
|
|
|
|
t2i_adapter_data=t2i_adapter_data,
|
|
|
|
)
|
|
|
|
latents = step_output.prev_sample
|
|
|
|
predicted_original = getattr(step_output, "pred_original_sample", None)
|
|
|
|
|
|
|
|
callback(
|
|
|
|
PipelineIntermediateState(
|
|
|
|
step=i,
|
|
|
|
order=self.scheduler.order,
|
|
|
|
total_steps=len(timesteps),
|
|
|
|
timestep=int(t),
|
|
|
|
latents=latents,
|
|
|
|
predicted_original=predicted_original,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
# restore unmasked part after the last step is completed
|
|
|
|
# in-process masking happens before each step
|
|
|
|
if mask is not None:
|
|
|
|
if is_gradient_mask:
|
|
|
|
latents = torch.where(mask > 0, latents, orig_latents)
|
|
|
|
else:
|
|
|
|
latents = torch.lerp(
|
|
|
|
orig_latents, latents.to(dtype=orig_latents.dtype), mask.to(dtype=orig_latents.dtype)
|
|
|
|
)
|
|
|
|
|
|
|
|
return latents
|