2023-07-11 15:19:36 +00:00
import torch
import inspect
from tqdm import tqdm
from typing import List , Literal , Optional , Union
2023-07-16 16:17:56 +00:00
from pydantic import Field , validator
2023-07-11 15:19:36 +00:00
2023-07-16 16:17:56 +00:00
from . . . backend . model_management import ModelType , SubModelType
2023-07-20 15:45:54 +00:00
from invokeai . app . util . step_callback import stable_diffusion_xl_step_callback
2023-07-11 15:19:36 +00:00
from . baseinvocation import ( BaseInvocation , BaseInvocationOutput ,
InvocationConfig , InvocationContext )
from . model import UNetField , ClipField , VaeField , MainModelField , ModelInfo
from . compel import ConditioningField
from . latent import LatentsField , SAMPLER_NAME_VALUES , LatentsOutput , get_scheduler , build_latents_output
2023-07-16 16:17:56 +00:00
class SDXLModelLoaderOutput ( BaseInvocationOutput ) :
""" SDXL base model loader output """
# fmt: off
type : Literal [ " sdxl_model_loader_output " ] = " sdxl_model_loader_output "
unet : UNetField = Field ( default = None , description = " UNet submodel " )
clip : ClipField = Field ( default = None , description = " Tokenizer and text_encoder submodels " )
2023-07-16 16:36:38 +00:00
clip2 : ClipField = Field ( default = None , description = " Tokenizer and text_encoder submodels " )
2023-07-16 16:17:56 +00:00
vae : VaeField = Field ( default = None , description = " Vae submodel " )
# fmt: on
2023-07-16 16:36:38 +00:00
class SDXLRefinerModelLoaderOutput ( BaseInvocationOutput ) :
2023-07-16 16:17:56 +00:00
""" SDXL refiner model loader output """
# fmt: off
type : Literal [ " sdxl_refiner_model_loader_output " ] = " sdxl_refiner_model_loader_output "
2023-07-16 16:36:38 +00:00
unet : UNetField = Field ( default = None , description = " UNet submodel " )
clip2 : ClipField = Field ( default = None , description = " Tokenizer and text_encoder submodels " )
vae : VaeField = Field ( default = None , description = " Vae submodel " )
# fmt: on
2023-07-16 16:17:56 +00:00
#fmt: on
class SDXLModelLoaderInvocation ( BaseInvocation ) :
""" Loads an sdxl base model, outputting its submodels. """
2023-07-17 09:47:41 +00:00
type : Literal [ " sdxl_model_loader " ] = " sdxl_model_loader "
2023-07-16 16:17:56 +00:00
model : MainModelField = Field ( description = " The model to load " )
# TODO: precision?
# Schema customisation
class Config ( InvocationConfig ) :
schema_extra = {
" ui " : {
" title " : " SDXL Model Loader " ,
" tags " : [ " model " , " loader " , " sdxl " ] ,
" type_hints " : { " model " : " model " } ,
} ,
}
def invoke ( self , context : InvocationContext ) - > SDXLModelLoaderOutput :
base_model = self . model . base_model
model_name = self . model . model_name
model_type = ModelType . Main
# TODO: not found exceptions
if not context . services . model_manager . model_exists (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
) :
raise Exception ( f " Unknown { base_model } { model_type } model: { model_name } " )
2023-07-16 16:36:38 +00:00
return SDXLModelLoaderOutput (
2023-07-16 16:17:56 +00:00
unet = UNetField (
unet = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . UNet ,
) ,
scheduler = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . Scheduler ,
) ,
loras = [ ] ,
) ,
clip = ClipField (
tokenizer = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . Tokenizer ,
) ,
text_encoder = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . TextEncoder ,
) ,
loras = [ ] ,
skipped_layers = 0 ,
) ,
clip2 = ClipField (
tokenizer = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . Tokenizer2 ,
) ,
text_encoder = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . TextEncoder2 ,
) ,
loras = [ ] ,
skipped_layers = 0 ,
) ,
vae = VaeField (
vae = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . Vae ,
) ,
) ,
)
2023-07-16 16:36:38 +00:00
class SDXLRefinerModelLoaderInvocation ( BaseInvocation ) :
2023-07-16 16:17:56 +00:00
""" Loads an sdxl refiner model, outputting its submodels. """
type : Literal [ " sdxl_refiner_model_loader " ] = " sdxl_refiner_model_loader "
2023-07-16 16:38:04 +00:00
model : MainModelField = Field ( description = " The model to load " )
# TODO: precision?
2023-07-16 16:17:56 +00:00
# Schema customisation
class Config ( InvocationConfig ) :
schema_extra = {
" ui " : {
" title " : " SDXL Refiner Model Loader " ,
" tags " : [ " model " , " loader " , " sdxl_refiner " ] ,
2023-07-25 12:08:25 +00:00
" type_hints " : { " model " : " refiner_model " } ,
2023-07-16 16:17:56 +00:00
} ,
}
2023-07-16 16:36:38 +00:00
def invoke ( self , context : InvocationContext ) - > SDXLRefinerModelLoaderOutput :
base_model = self . model . base_model
model_name = self . model . model_name
model_type = ModelType . Main
2023-07-16 16:17:56 +00:00
2023-07-16 16:36:38 +00:00
# TODO: not found exceptions
if not context . services . model_manager . model_exists (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
) :
raise Exception ( f " Unknown { base_model } { model_type } model: { model_name } " )
return SDXLRefinerModelLoaderOutput (
unet = UNetField (
unet = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . UNet ,
) ,
scheduler = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . Scheduler ,
) ,
loras = [ ] ,
) ,
clip2 = ClipField (
tokenizer = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . Tokenizer2 ,
) ,
text_encoder = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . TextEncoder2 ,
) ,
loras = [ ] ,
skipped_layers = 0 ,
) ,
vae = VaeField (
vae = ModelInfo (
model_name = model_name ,
base_model = base_model ,
model_type = model_type ,
submodel = SubModelType . Vae ,
) ,
) ,
)
2023-07-11 15:19:36 +00:00
# Text to image
class SDXLTextToLatentsInvocation ( BaseInvocation ) :
""" Generates latents from conditionings. """
type : Literal [ " t2l_sdxl " ] = " t2l_sdxl "
# Inputs
# fmt: off
positive_conditioning : Optional [ ConditioningField ] = Field ( description = " Positive conditioning for generation " )
negative_conditioning : Optional [ ConditioningField ] = Field ( description = " Negative conditioning for generation " )
noise : Optional [ LatentsField ] = Field ( description = " The noise to use " )
steps : int = Field ( default = 10 , gt = 0 , description = " The number of steps to use to generate the image " )
cfg_scale : Union [ float , List [ float ] ] = Field ( default = 7.5 , ge = 1 , description = " The Classifier-Free Guidance, higher values may result in a result closer to the prompt " , )
scheduler : SAMPLER_NAME_VALUES = Field ( default = " euler " , description = " The scheduler to use " )
unet : UNetField = Field ( default = None , description = " UNet submodel " )
2023-07-16 03:00:37 +00:00
denoising_end : float = Field ( default = 1.0 , gt = 0 , le = 1 , description = " " )
2023-07-11 15:19:36 +00:00
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator ( " cfg_scale " )
def ge_one ( cls , v ) :
""" validate that all cfg_scale values are >= 1 """
if isinstance ( v , list ) :
for i in v :
if i < 1 :
raise ValueError ( ' cfg_scale must be greater than 1 ' )
else :
if v < 1 :
raise ValueError ( ' cfg_scale must be greater than 1 ' )
return v
# Schema customisation
class Config ( InvocationConfig ) :
schema_extra = {
" ui " : {
2023-07-18 14:26:45 +00:00
" title " : " SDXL Text To Latents " ,
2023-07-11 15:19:36 +00:00
" tags " : [ " latents " ] ,
" type_hints " : {
" model " : " model " ,
# "cfg_scale": "float",
" cfg_scale " : " number "
}
} ,
}
2023-07-20 15:45:54 +00:00
def dispatch_progress (
self ,
context : InvocationContext ,
source_node_id : str ,
sample ,
step ,
total_steps ,
) - > None :
stable_diffusion_xl_step_callback (
context = context ,
node = self . dict ( ) ,
source_node_id = source_node_id ,
sample = sample ,
step = step ,
total_steps = total_steps ,
)
2023-07-11 15:19:36 +00:00
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad ( )
def invoke ( self , context : InvocationContext ) - > LatentsOutput :
2023-07-20 15:45:54 +00:00
graph_execution_state = context . services . graph_execution_manager . get (
context . graph_execution_state_id
)
source_node_id = graph_execution_state . prepared_source_mapping [ self . id ]
2023-07-11 15:19:36 +00:00
latents = context . services . latents . get ( self . noise . latents_name )
positive_cond_data = context . services . latents . get ( self . positive_conditioning . conditioning_name )
prompt_embeds = positive_cond_data . conditionings [ 0 ] . embeds
pooled_prompt_embeds = positive_cond_data . conditionings [ 0 ] . pooled_embeds
2023-07-16 03:00:37 +00:00
add_time_ids = positive_cond_data . conditionings [ 0 ] . add_time_ids
2023-07-11 15:19:36 +00:00
negative_cond_data = context . services . latents . get ( self . negative_conditioning . conditioning_name )
negative_prompt_embeds = negative_cond_data . conditionings [ 0 ] . embeds
negative_pooled_prompt_embeds = negative_cond_data . conditionings [ 0 ] . pooled_embeds
2023-07-16 03:00:37 +00:00
add_neg_time_ids = negative_cond_data . conditionings [ 0 ] . add_time_ids
2023-07-11 15:19:36 +00:00
scheduler = get_scheduler (
context = context ,
scheduler_info = self . unet . scheduler ,
scheduler_name = self . scheduler ,
)
2023-07-16 03:00:37 +00:00
num_inference_steps = self . steps
scheduler . set_timesteps ( num_inference_steps )
2023-07-11 15:19:36 +00:00
timesteps = scheduler . timesteps
2023-07-14 02:00:33 +00:00
latents = latents * scheduler . init_noise_sigma
2023-07-11 15:19:36 +00:00
unet_info = context . services . model_manager . get_model (
* * self . unet . unet . dict ( )
)
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet :
2023-07-16 03:00:37 +00:00
extra_step_kwargs = dict ( )
if " eta " in set ( inspect . signature ( scheduler . step ) . parameters . keys ( ) ) :
extra_step_kwargs . update (
eta = 0.0 ,
)
2023-07-14 02:25:09 +00:00
if " generator " in set ( inspect . signature ( scheduler . step ) . parameters . keys ( ) ) :
extra_step_kwargs . update (
generator = torch . Generator ( device = unet . device ) . manual_seed ( 0 ) ,
)
2023-07-16 03:00:37 +00:00
num_warmup_steps = len ( timesteps ) - self . steps * scheduler . order
# apply denoising_end
skipped_final_steps = int ( round ( ( 1 - self . denoising_end ) * self . steps ) )
num_inference_steps = num_inference_steps - skipped_final_steps
timesteps = timesteps [ : num_warmup_steps + scheduler . order * num_inference_steps ]
2023-07-11 15:19:36 +00:00
if not context . services . configuration . sequential_guidance :
prompt_embeds = torch . cat ( [ negative_prompt_embeds , prompt_embeds ] , dim = 0 )
add_text_embeds = torch . cat ( [ negative_pooled_prompt_embeds , pooled_prompt_embeds ] , dim = 0 )
2023-07-16 03:00:37 +00:00
add_time_ids = torch . cat ( [ add_neg_time_ids , add_time_ids ] , dim = 0 )
2023-07-11 15:19:36 +00:00
prompt_embeds = prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
add_text_embeds = add_text_embeds . to ( device = unet . device , dtype = unet . dtype )
add_time_ids = add_time_ids . to ( device = unet . device , dtype = unet . dtype )
latents = latents . to ( device = unet . device , dtype = unet . dtype )
2023-07-18 13:51:16 +00:00
with tqdm ( total = num_inference_steps ) as progress_bar :
2023-07-11 15:19:36 +00:00
for i , t in enumerate ( timesteps ) :
# expand the latents if we are doing classifier free guidance
latent_model_input = torch . cat ( [ latents ] * 2 ) if do_classifier_free_guidance else latents
latent_model_input = scheduler . scale_model_input ( latent_model_input , t )
# predict the noise residual
added_cond_kwargs = { " text_embeds " : add_text_embeds , " time_ids " : add_time_ids }
noise_pred = unet (
latent_model_input ,
t ,
encoder_hidden_states = prompt_embeds ,
cross_attention_kwargs = cross_attention_kwargs ,
added_cond_kwargs = added_cond_kwargs ,
return_dict = False ,
) [ 0 ]
# perform guidance
if do_classifier_free_guidance :
noise_pred_uncond , noise_pred_text = noise_pred . chunk ( 2 )
noise_pred = noise_pred_uncond + self . cfg_scale * ( noise_pred_text - noise_pred_uncond )
#del noise_pred_uncond
#del noise_pred_text
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler . step ( noise_pred , t , latents , * * extra_step_kwargs , return_dict = False ) [ 0 ]
# call the callback, if provided
if i == len ( timesteps ) - 1 or ( ( i + 1 ) > num_warmup_steps and ( i + 1 ) % scheduler . order == 0 ) :
progress_bar . update ( )
2023-07-20 15:45:54 +00:00
self . dispatch_progress ( context , source_node_id , latents , i , num_inference_steps )
2023-07-11 15:19:36 +00:00
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
else :
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
negative_prompt_embeds = negative_prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
2023-07-16 03:00:37 +00:00
add_neg_time_ids = add_neg_time_ids . to ( device = unet . device , dtype = unet . dtype )
2023-07-11 15:19:36 +00:00
pooled_prompt_embeds = pooled_prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
prompt_embeds = prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
add_time_ids = add_time_ids . to ( device = unet . device , dtype = unet . dtype )
latents = latents . to ( device = unet . device , dtype = unet . dtype )
2023-07-18 13:51:16 +00:00
with tqdm ( total = num_inference_steps ) as progress_bar :
2023-07-11 15:19:36 +00:00
for i , t in enumerate ( timesteps ) :
# expand the latents if we are doing classifier free guidance
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
2023-07-16 03:00:37 +00:00
latent_model_input = scheduler . scale_model_input ( latents , t )
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# predict the noise residual
added_cond_kwargs = { " text_embeds " : negative_pooled_prompt_embeds , " time_ids " : add_neg_time_ids }
noise_pred_uncond = unet (
latent_model_input ,
t ,
encoder_hidden_states = negative_prompt_embeds ,
cross_attention_kwargs = cross_attention_kwargs ,
added_cond_kwargs = added_cond_kwargs ,
return_dict = False ,
) [ 0 ]
added_cond_kwargs = { " text_embeds " : pooled_prompt_embeds , " time_ids " : add_time_ids }
noise_pred_text = unet (
latent_model_input ,
t ,
encoder_hidden_states = prompt_embeds ,
cross_attention_kwargs = cross_attention_kwargs ,
added_cond_kwargs = added_cond_kwargs ,
return_dict = False ,
) [ 0 ]
# perform guidance
noise_pred = noise_pred_uncond + self . cfg_scale * ( noise_pred_text - noise_pred_uncond )
#del noise_pred_text
#del noise_pred_uncond
#import gc
#gc.collect()
#torch.cuda.empty_cache()
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler . step ( noise_pred , t , latents , * * extra_step_kwargs , return_dict = False ) [ 0 ]
#del noise_pred
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# call the callback, if provided
if i == len ( timesteps ) - 1 or ( ( i + 1 ) > num_warmup_steps and ( i + 1 ) % scheduler . order == 0 ) :
progress_bar . update ( )
2023-07-20 15:45:54 +00:00
self . dispatch_progress ( context , source_node_id , latents , i , num_inference_steps )
2023-07-16 03:00:37 +00:00
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
#################
2023-07-18 13:20:25 +00:00
latents = latents . to ( " cpu " )
2023-07-16 03:00:37 +00:00
torch . cuda . empty_cache ( )
name = f ' { context . graph_execution_state_id } __ { self . id } '
context . services . latents . save ( name , latents )
return build_latents_output ( latents_name = name , latents = latents )
class SDXLLatentsToLatentsInvocation ( BaseInvocation ) :
""" Generates latents from conditionings. """
type : Literal [ " l2l_sdxl " ] = " l2l_sdxl "
# Inputs
# fmt: off
positive_conditioning : Optional [ ConditioningField ] = Field ( description = " Positive conditioning for generation " )
negative_conditioning : Optional [ ConditioningField ] = Field ( description = " Negative conditioning for generation " )
noise : Optional [ LatentsField ] = Field ( description = " The noise to use " )
steps : int = Field ( default = 10 , gt = 0 , description = " The number of steps to use to generate the image " )
cfg_scale : Union [ float , List [ float ] ] = Field ( default = 7.5 , ge = 1 , description = " The Classifier-Free Guidance, higher values may result in a result closer to the prompt " , )
scheduler : SAMPLER_NAME_VALUES = Field ( default = " euler " , description = " The scheduler to use " )
unet : UNetField = Field ( default = None , description = " UNet submodel " )
latents : Optional [ LatentsField ] = Field ( description = " Initial latents " )
denoising_start : float = Field ( default = 0.0 , ge = 0 , lt = 1 , description = " " )
denoising_end : float = Field ( default = 1.0 , gt = 0 , le = 1 , description = " " )
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator ( " cfg_scale " )
def ge_one ( cls , v ) :
""" validate that all cfg_scale values are >= 1 """
if isinstance ( v , list ) :
for i in v :
if i < 1 :
raise ValueError ( ' cfg_scale must be greater than 1 ' )
else :
if v < 1 :
raise ValueError ( ' cfg_scale must be greater than 1 ' )
return v
# Schema customisation
class Config ( InvocationConfig ) :
schema_extra = {
" ui " : {
2023-07-18 14:26:45 +00:00
" title " : " SDXL Latents to Latents " ,
2023-07-16 03:00:37 +00:00
" tags " : [ " latents " ] ,
" type_hints " : {
" model " : " model " ,
# "cfg_scale": "float",
" cfg_scale " : " number "
}
} ,
}
2023-07-20 15:45:54 +00:00
def dispatch_progress (
self ,
context : InvocationContext ,
source_node_id : str ,
sample ,
step ,
total_steps ,
) - > None :
stable_diffusion_xl_step_callback (
context = context ,
node = self . dict ( ) ,
source_node_id = source_node_id ,
sample = sample ,
step = step ,
total_steps = total_steps ,
)
2023-07-16 03:00:37 +00:00
# based on
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
@torch.no_grad ( )
def invoke ( self , context : InvocationContext ) - > LatentsOutput :
2023-07-20 15:45:54 +00:00
graph_execution_state = context . services . graph_execution_manager . get (
context . graph_execution_state_id
)
source_node_id = graph_execution_state . prepared_source_mapping [ self . id ]
2023-07-16 03:00:37 +00:00
latents = context . services . latents . get ( self . latents . latents_name )
positive_cond_data = context . services . latents . get ( self . positive_conditioning . conditioning_name )
prompt_embeds = positive_cond_data . conditionings [ 0 ] . embeds
pooled_prompt_embeds = positive_cond_data . conditionings [ 0 ] . pooled_embeds
add_time_ids = positive_cond_data . conditionings [ 0 ] . add_time_ids
negative_cond_data = context . services . latents . get ( self . negative_conditioning . conditioning_name )
negative_prompt_embeds = negative_cond_data . conditionings [ 0 ] . embeds
negative_pooled_prompt_embeds = negative_cond_data . conditionings [ 0 ] . pooled_embeds
add_neg_time_ids = negative_cond_data . conditionings [ 0 ] . add_time_ids
scheduler = get_scheduler (
context = context ,
scheduler_info = self . unet . scheduler ,
scheduler_name = self . scheduler ,
)
# apply denoising_start
num_inference_steps = self . steps
scheduler . set_timesteps ( num_inference_steps )
t_start = int ( round ( self . denoising_start * num_inference_steps ) )
timesteps = scheduler . timesteps [ t_start * scheduler . order : ]
num_inference_steps = num_inference_steps - t_start
# apply noise(if provided)
if self . noise is not None :
noise = context . services . latents . get ( self . noise . latents_name )
latents = scheduler . add_noise ( latents , noise , timesteps [ : 1 ] )
del noise
unet_info = context . services . model_manager . get_model (
* * self . unet . unet . dict ( )
)
do_classifier_free_guidance = True
cross_attention_kwargs = None
with unet_info as unet :
# apply scheduler extra args
extra_step_kwargs = dict ( )
if " eta " in set ( inspect . signature ( scheduler . step ) . parameters . keys ( ) ) :
extra_step_kwargs . update (
eta = 0.0 ,
)
if " generator " in set ( inspect . signature ( scheduler . step ) . parameters . keys ( ) ) :
extra_step_kwargs . update (
generator = torch . Generator ( device = unet . device ) . manual_seed ( 0 ) ,
)
num_warmup_steps = max ( len ( timesteps ) - num_inference_steps * scheduler . order , 0 )
# apply denoising_end
skipped_final_steps = int ( round ( ( 1 - self . denoising_end ) * self . steps ) )
num_inference_steps = num_inference_steps - skipped_final_steps
timesteps = timesteps [ : num_warmup_steps + scheduler . order * num_inference_steps ]
if not context . services . configuration . sequential_guidance :
prompt_embeds = torch . cat ( [ negative_prompt_embeds , prompt_embeds ] , dim = 0 )
add_text_embeds = torch . cat ( [ negative_pooled_prompt_embeds , pooled_prompt_embeds ] , dim = 0 )
add_time_ids = torch . cat ( [ add_neg_time_ids , add_time_ids ] , dim = 0 )
prompt_embeds = prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
add_text_embeds = add_text_embeds . to ( device = unet . device , dtype = unet . dtype )
add_time_ids = add_time_ids . to ( device = unet . device , dtype = unet . dtype )
latents = latents . to ( device = unet . device , dtype = unet . dtype )
with tqdm ( total = num_inference_steps ) as progress_bar :
for i , t in enumerate ( timesteps ) :
# expand the latents if we are doing classifier free guidance
latent_model_input = torch . cat ( [ latents ] * 2 ) if do_classifier_free_guidance else latents
latent_model_input = scheduler . scale_model_input ( latent_model_input , t )
# predict the noise residual
added_cond_kwargs = { " text_embeds " : add_text_embeds , " time_ids " : add_time_ids }
noise_pred = unet (
latent_model_input ,
t ,
encoder_hidden_states = prompt_embeds ,
cross_attention_kwargs = cross_attention_kwargs ,
added_cond_kwargs = added_cond_kwargs ,
return_dict = False ,
) [ 0 ]
# perform guidance
if do_classifier_free_guidance :
noise_pred_uncond , noise_pred_text = noise_pred . chunk ( 2 )
noise_pred = noise_pred_uncond + self . cfg_scale * ( noise_pred_text - noise_pred_uncond )
#del noise_pred_uncond
#del noise_pred_text
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler . step ( noise_pred , t , latents , * * extra_step_kwargs , return_dict = False ) [ 0 ]
# call the callback, if provided
if i == len ( timesteps ) - 1 or ( ( i + 1 ) > num_warmup_steps and ( i + 1 ) % scheduler . order == 0 ) :
progress_bar . update ( )
2023-07-20 15:45:54 +00:00
self . dispatch_progress ( context , source_node_id , latents , i , num_inference_steps )
2023-07-16 03:00:37 +00:00
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
else :
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
negative_prompt_embeds = negative_prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
add_neg_time_ids = add_neg_time_ids . to ( device = unet . device , dtype = unet . dtype )
pooled_prompt_embeds = pooled_prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
prompt_embeds = prompt_embeds . to ( device = unet . device , dtype = unet . dtype )
add_time_ids = add_time_ids . to ( device = unet . device , dtype = unet . dtype )
latents = latents . to ( device = unet . device , dtype = unet . dtype )
with tqdm ( total = num_inference_steps ) as progress_bar :
for i , t in enumerate ( timesteps ) :
# expand the latents if we are doing classifier free guidance
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
2023-07-11 15:19:36 +00:00
latent_model_input = scheduler . scale_model_input ( latents , t )
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# predict the noise residual
added_cond_kwargs = { " text_embeds " : negative_pooled_prompt_embeds , " time_ids " : add_time_ids }
noise_pred_uncond = unet (
latent_model_input ,
t ,
encoder_hidden_states = negative_prompt_embeds ,
cross_attention_kwargs = cross_attention_kwargs ,
added_cond_kwargs = added_cond_kwargs ,
return_dict = False ,
) [ 0 ]
added_cond_kwargs = { " text_embeds " : pooled_prompt_embeds , " time_ids " : add_time_ids }
noise_pred_text = unet (
latent_model_input ,
t ,
encoder_hidden_states = prompt_embeds ,
cross_attention_kwargs = cross_attention_kwargs ,
added_cond_kwargs = added_cond_kwargs ,
return_dict = False ,
) [ 0 ]
# perform guidance
noise_pred = noise_pred_uncond + self . cfg_scale * ( noise_pred_text - noise_pred_uncond )
#del noise_pred_text
#del noise_pred_uncond
#import gc
#gc.collect()
#torch.cuda.empty_cache()
#if do_classifier_free_guidance and guidance_rescale > 0.0:
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler . step ( noise_pred , t , latents , * * extra_step_kwargs , return_dict = False ) [ 0 ]
#del noise_pred
#import gc
#gc.collect()
#torch.cuda.empty_cache()
# call the callback, if provided
if i == len ( timesteps ) - 1 or ( ( i + 1 ) > num_warmup_steps and ( i + 1 ) % scheduler . order == 0 ) :
progress_bar . update ( )
2023-07-20 15:45:54 +00:00
self . dispatch_progress ( context , source_node_id , latents , i , num_inference_steps )
2023-07-11 15:19:36 +00:00
#if callback is not None and i % callback_steps == 0:
# callback(i, t, latents)
#################
2023-07-18 13:20:25 +00:00
latents = latents . to ( " cpu " )
2023-07-11 15:19:36 +00:00
torch . cuda . empty_cache ( )
name = f ' { context . graph_execution_state_id } __ { self . id } '
context . services . latents . save ( name , latents )
return build_latents_output ( latents_name = name , latents = latents )