mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
139 lines
6.4 KiB
Python
139 lines
6.4 KiB
Python
|
from typing import Literal, Optional
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torchvision.transforms as T
|
||
|
from PIL import Image, ImageFilter
|
||
|
from torchvision.transforms.functional import resize as tv_resize
|
||
|
|
||
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, invocation, invocation_output
|
||
|
from invokeai.app.invocations.fields import (
|
||
|
DenoiseMaskField,
|
||
|
FieldDescriptions,
|
||
|
ImageField,
|
||
|
Input,
|
||
|
InputField,
|
||
|
OutputField,
|
||
|
)
|
||
|
from invokeai.app.invocations.image_to_latents import ImageToLatentsInvocation
|
||
|
from invokeai.app.invocations.latent import DEFAULT_PRECISION
|
||
|
from invokeai.app.invocations.model import UNetField, VAEField
|
||
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||
|
from invokeai.backend.model_manager import LoadedModel
|
||
|
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
|
||
|
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
|
||
|
|
||
|
|
||
|
@invocation_output("gradient_mask_output")
|
||
|
class GradientMaskOutput(BaseInvocationOutput):
|
||
|
"""Outputs a denoise mask and an image representing the total gradient of the mask."""
|
||
|
|
||
|
denoise_mask: DenoiseMaskField = OutputField(description="Mask for denoise model run")
|
||
|
expanded_mask_area: ImageField = OutputField(
|
||
|
description="Image representing the total gradient area of the mask. For paste-back purposes."
|
||
|
)
|
||
|
|
||
|
|
||
|
@invocation(
|
||
|
"create_gradient_mask",
|
||
|
title="Create Gradient Mask",
|
||
|
tags=["mask", "denoise"],
|
||
|
category="latents",
|
||
|
version="1.1.0",
|
||
|
)
|
||
|
class CreateGradientMaskInvocation(BaseInvocation):
|
||
|
"""Creates mask for denoising model run."""
|
||
|
|
||
|
mask: ImageField = InputField(default=None, description="Image which will be masked", ui_order=1)
|
||
|
edge_radius: int = InputField(
|
||
|
default=16, ge=0, description="How far to blur/expand the edges of the mask", ui_order=2
|
||
|
)
|
||
|
coherence_mode: Literal["Gaussian Blur", "Box Blur", "Staged"] = InputField(default="Gaussian Blur", ui_order=3)
|
||
|
minimum_denoise: float = InputField(
|
||
|
default=0.0, ge=0, le=1, description="Minimum denoise level for the coherence region", ui_order=4
|
||
|
)
|
||
|
image: Optional[ImageField] = InputField(
|
||
|
default=None,
|
||
|
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||
|
title="[OPTIONAL] Image",
|
||
|
ui_order=6,
|
||
|
)
|
||
|
unet: Optional[UNetField] = InputField(
|
||
|
description="OPTIONAL: If the Unet is a specialized Inpainting model, masked_latents will be generated from the image with the VAE",
|
||
|
default=None,
|
||
|
input=Input.Connection,
|
||
|
title="[OPTIONAL] UNet",
|
||
|
ui_order=5,
|
||
|
)
|
||
|
vae: Optional[VAEField] = InputField(
|
||
|
default=None,
|
||
|
description="OPTIONAL: Only connect for specialized Inpainting models, masked_latents will be generated from the image with the VAE",
|
||
|
title="[OPTIONAL] VAE",
|
||
|
input=Input.Connection,
|
||
|
ui_order=7,
|
||
|
)
|
||
|
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled, ui_order=8)
|
||
|
fp32: bool = InputField(
|
||
|
default=DEFAULT_PRECISION == "float32",
|
||
|
description=FieldDescriptions.fp32,
|
||
|
ui_order=9,
|
||
|
)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def invoke(self, context: InvocationContext) -> GradientMaskOutput:
|
||
|
mask_image = context.images.get_pil(self.mask.image_name, mode="L")
|
||
|
if self.edge_radius > 0:
|
||
|
if self.coherence_mode == "Box Blur":
|
||
|
blur_mask = mask_image.filter(ImageFilter.BoxBlur(self.edge_radius))
|
||
|
else: # Gaussian Blur OR Staged
|
||
|
# Gaussian Blur uses standard deviation. 1/2 radius is a good approximation
|
||
|
blur_mask = mask_image.filter(ImageFilter.GaussianBlur(self.edge_radius / 2))
|
||
|
|
||
|
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(blur_mask, normalize=False)
|
||
|
|
||
|
# redistribute blur so that the original edges are 0 and blur outwards to 1
|
||
|
blur_tensor = (blur_tensor - 0.5) * 2
|
||
|
|
||
|
threshold = 1 - self.minimum_denoise
|
||
|
|
||
|
if self.coherence_mode == "Staged":
|
||
|
# wherever the blur_tensor is less than fully masked, convert it to threshold
|
||
|
blur_tensor = torch.where((blur_tensor < 1) & (blur_tensor > 0), threshold, blur_tensor)
|
||
|
else:
|
||
|
# wherever the blur_tensor is above threshold but less than 1, drop it to threshold
|
||
|
blur_tensor = torch.where((blur_tensor > threshold) & (blur_tensor < 1), threshold, blur_tensor)
|
||
|
|
||
|
else:
|
||
|
blur_tensor: torch.Tensor = image_resized_to_grid_as_tensor(mask_image, normalize=False)
|
||
|
|
||
|
mask_name = context.tensors.save(tensor=blur_tensor.unsqueeze(1))
|
||
|
|
||
|
# compute a [0, 1] mask from the blur_tensor
|
||
|
expanded_mask = torch.where((blur_tensor < 1), 0, 1)
|
||
|
expanded_mask_image = Image.fromarray((expanded_mask.squeeze(0).numpy() * 255).astype(np.uint8), mode="L")
|
||
|
expanded_image_dto = context.images.save(expanded_mask_image)
|
||
|
|
||
|
masked_latents_name = None
|
||
|
if self.unet is not None and self.vae is not None and self.image is not None:
|
||
|
# all three fields must be present at the same time
|
||
|
main_model_config = context.models.get_config(self.unet.unet.key)
|
||
|
assert isinstance(main_model_config, MainConfigBase)
|
||
|
if main_model_config.variant is ModelVariantType.Inpaint:
|
||
|
mask = blur_tensor
|
||
|
vae_info: LoadedModel = context.models.load(self.vae.vae)
|
||
|
image = context.images.get_pil(self.image.image_name)
|
||
|
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
|
||
|
if image_tensor.dim() == 3:
|
||
|
image_tensor = image_tensor.unsqueeze(0)
|
||
|
img_mask = tv_resize(mask, image_tensor.shape[-2:], T.InterpolationMode.BILINEAR, antialias=False)
|
||
|
masked_image = image_tensor * torch.where(img_mask < 0.5, 0.0, 1.0)
|
||
|
masked_latents = ImageToLatentsInvocation.vae_encode(
|
||
|
vae_info, self.fp32, self.tiled, masked_image.clone()
|
||
|
)
|
||
|
masked_latents_name = context.tensors.save(tensor=masked_latents)
|
||
|
|
||
|
return GradientMaskOutput(
|
||
|
denoise_mask=DenoiseMaskField(mask_name=mask_name, masked_latents_name=masked_latents_name, gradient=True),
|
||
|
expanded_mask_area=ImageField(image_name=expanded_image_dto.image_name),
|
||
|
)
|