InvokeAI/invokeai/backend/model_management/models/controlnet.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

112 lines
3.5 KiB
Python
Raw Normal View History

2023-06-14 01:26:21 +00:00
import os
import torch
2023-06-20 00:30:09 +00:00
from enum import Enum
2023-07-15 14:11:41 +00:00
from typing import Optional
2023-06-14 01:26:21 +00:00
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
EmptyConfigLoader,
calc_model_size_by_fs,
calc_model_size_by_data,
classproperty,
2023-07-08 11:26:25 +00:00
InvalidModelException,
2023-07-15 14:11:41 +00:00
ModelNotFoundException,
2023-06-14 01:26:21 +00:00
)
2023-06-20 00:30:09 +00:00
class ControlNetModelFormat(str, Enum):
Checkpoint = "checkpoint"
Diffusers = "diffusers"
2023-06-14 01:26:21 +00:00
class ControlNetModel(ModelBase):
#model_class: Type
#model_size: int
2023-06-17 14:15:36 +00:00
class Config(ModelConfigBase):
2023-06-20 00:30:09 +00:00
model_format: ControlNetModelFormat
2023-06-14 01:26:21 +00:00
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.ControlNet
super().__init__(model_path, base_model, model_type)
try:
config = EmptyConfigLoader.load_config(self.model_path, config_name="config.json")
#config = json.loads(os.path.join(self.model_path, "config.json"))
except:
raise Exception("Invalid controlnet model! (config.json not found or invalid)")
model_class_name = config.get("_class_name", None)
if model_class_name not in {"ControlNetModel"}:
raise Exception(f"Invalid ControlNet model! Unknown _class_name: {model_class_name}")
try:
self.model_class = self._hf_definition_to_type(["diffusers", model_class_name])
self.model_size = calc_model_size_by_fs(self.model_path)
except:
raise Exception("Invalid ControlNet model!")
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise Exception("There is no child models in controlnet model")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in controlnet model")
2023-07-15 14:11:41 +00:00
model = None
for variant in ['fp16',None]:
try:
model = self.model_class.from_pretrained(
self.model_path,
torch_dtype=torch_dtype,
variant=variant,
)
break
except:
pass
if not model:
raise ModelNotFoundException()
2023-06-14 01:26:21 +00:00
# calc more accurate size
self.model_size = calc_model_size_by_data(model)
return model
@classproperty
def save_to_config(cls) -> bool:
return False
@classmethod
def detect_format(cls, path: str):
2023-07-08 11:26:25 +00:00
if not os.path.exists(path):
raise ModelNotFoundException()
2023-06-14 01:26:21 +00:00
if os.path.isdir(path):
2023-07-08 11:26:25 +00:00
if os.path.exists(os.path.join(path, "config.json")):
return ControlNetModelFormat.Diffusers
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt", "pth"]]):
return ControlNetModelFormat.Checkpoint
raise InvalidModelException(f"Not a valid model: {path}")
2023-06-14 01:26:21 +00:00
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase, # empty config or config of parent model
base_model: BaseModelType,
) -> str:
2023-06-20 00:30:09 +00:00
if cls.detect_format(model_path) != ControlNetModelFormat.Diffusers:
2023-06-17 09:14:37 +00:00
raise NotImplementedError("Checkpoint controlnet models currently unsupported")
2023-06-14 01:26:21 +00:00
else:
return model_path