InvokeAI/ldm/invoke/generator/txt2img2img.py

122 lines
4.7 KiB
Python
Raw Normal View History

'''
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
'''
import math
from typing import Callable, Optional
import torch
from ldm.invoke.generator.base import Generator
from ldm.invoke.generator.diffusers_pipeline import trim_to_multiple_of, StableDiffusionGeneratorPipeline
class Txt2Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # for get_noise()
def get_make_image(self, prompt:str, sampler, steps:int, cfg_scale:float, ddim_eta,
conditioning, width:int, height:int, strength:float,
step_callback:Optional[Callable]=None, **kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it
kwargs are 'width' and 'height'
"""
2022-10-24 00:02:42 +00:00
uc, c, extra_conditioning_info = conditioning
scale_dim = min(width, height)
scale = 512 / scale_dim
init_width, init_height = trim_to_multiple_of(scale * width, scale * height)
# noinspection PyTypeChecker
pipeline: StableDiffusionGeneratorPipeline = self.model
pipeline.scheduler = sampler
def make_image(x_T):
2022-10-26 01:59:13 +00:00
first_pass_latent_output = pipeline.latents_from_embeddings(
latents=x_T,
num_inference_steps=steps,
text_embeddings=c,
unconditioned_embeddings=uc,
guidance_scale=cfg_scale,
callback=step_callback,
extra_conditioning_info=extra_conditioning_info,
# TODO: eta = ddim_eta,
# TODO: threshold = threshold,
)
2022-10-26 01:59:13 +00:00
print(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
)
2022-10-26 01:59:13 +00:00
# resizing
resized_latents = torch.nn.functional.interpolate(
first_pass_latent_output,
2022-10-26 01:59:13 +00:00
size=(height // self.downsampling_factor, width // self.downsampling_factor),
mode="bilinear"
)
pipeline_output = pipeline.img2img_from_latents_and_embeddings(
resized_latents,
num_inference_steps=steps,
text_embeddings=c,
unconditioned_embeddings=uc,
guidance_scale=cfg_scale, strength=strength,
extra_conditioning_info=extra_conditioning_info,
noise_func=self.get_noise_like,
callback=step_callback)
return pipeline.numpy_to_pil(pipeline_output.images)[0]
# FIXME: do we really need something entirely different for the inpainting model?
# in the case of the inpainting model being loaded, the trick of
# providing an interpolated latent doesn't work, so we transiently
# create a 512x512 PIL image, upscale it, and run the inpainting
# over it in img2img mode. Because the inpaing model is so conservative
# it doesn't change the image (much)
return make_image
def get_noise_like(self, like: torch.Tensor):
device = like.device
if device.type == 'mps':
x = torch.randn_like(like, device='cpu').to(device)
else:
x = torch.randn_like(like, device=device)
if self.perlin > 0.0:
shape = like.shape
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
return x
# returns a tensor filled with random numbers from a normal distribution
def get_noise(self,width,height,scale = True):
# print(f"Get noise: {width}x{height}")
if scale:
trained_square = 512 * 512
actual_square = width * height
scale = math.sqrt(trained_square / actual_square)
scaled_width = math.ceil(scale * width / 64) * 64
scaled_height = math.ceil(scale * height / 64) * 64
else:
scaled_width = width
scaled_height = height
2022-10-26 01:59:13 +00:00
device = self.model.device
if self.use_mps_noise or device.type == 'mps':
return torch.randn([1,
self.latent_channels,
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor],
device='cpu').to(device)
else:
return torch.randn([1,
self.latent_channels,
scaled_height // self.downsampling_factor,
scaled_width // self.downsampling_factor],
device=device)