InvokeAI/invokeai/app/invocations/facetools.py

691 lines
26 KiB
Python
Raw Normal View History

Nodes-FaceTools (FaceIdentifier, FaceOff, FaceMask) (#4576) * node-FaceTools * Added more documentation for facetools * invert FaceMask masking - FaceMask had face protected and surroundings change by default (face white, else black) - Change to how FaceOff/others work: the opposite where surroundings protected, face changes by default (face black, else white) * reflect changed facemask behaviour in docs * add FaceOff+FaceMask workflows - Add FaceOff and FaceMask example workflows to docs/workflows * add FaceMask+FaceOff workflows to exampleworkflows.md - used invokeai URL paths mimicking other workflow URLs, hopefully they translate when/if merged * inheriting, typehints, black/isort/flake8 - modified FaceMask and FaceOff output classes to inherit base image, height, width from ImageOutput - Added type annotations to helper functions, required some reworking of code's stored data * remove credit header - Was in my personal/repo copy, don't think it's necessary if merged. * Optionals & image declaration duplication - Added Optional[] to optional outputs and types - removed duplication of image = context.services.images.get_pil_images(self.image.image_name) declaration - Still need to find a way to deal with mask_pil None typing errors * face(facetools): fix typing issues, add validation, clean up structure * feat(facetools): update field descriptions * Update FaceOff_FaceScale2x.json - update FaceOff workflow after Bounded Image field removed in place of inheriting Image out field from ImageOutput * feat(facetools): pass through original image on facemask if invalid face ids requested * feat(facetools): tidy variable names & fn calls * feat(facetools): bundle inter font, draw ids with it Inter is a SIL Open Font license. The license is included and is fully permissive. Inter is the same font the UI and commercial application already uses. Only the "regular" version is bundled. * chore(facetools): isort & fix mypy issues * docs(facetools): update and format docs --------- Co-authored-by: Millun Atluri <millun.atluri@gmail.com> Co-authored-by: Millun Atluri <Millu@users.noreply.github.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-29 07:54:13 +00:00
import math
import re
from pathlib import Path
Nodes-FaceTools (FaceIdentifier, FaceOff, FaceMask) (#4576) * node-FaceTools * Added more documentation for facetools * invert FaceMask masking - FaceMask had face protected and surroundings change by default (face white, else black) - Change to how FaceOff/others work: the opposite where surroundings protected, face changes by default (face black, else white) * reflect changed facemask behaviour in docs * add FaceOff+FaceMask workflows - Add FaceOff and FaceMask example workflows to docs/workflows * add FaceMask+FaceOff workflows to exampleworkflows.md - used invokeai URL paths mimicking other workflow URLs, hopefully they translate when/if merged * inheriting, typehints, black/isort/flake8 - modified FaceMask and FaceOff output classes to inherit base image, height, width from ImageOutput - Added type annotations to helper functions, required some reworking of code's stored data * remove credit header - Was in my personal/repo copy, don't think it's necessary if merged. * Optionals & image declaration duplication - Added Optional[] to optional outputs and types - removed duplication of image = context.services.images.get_pil_images(self.image.image_name) declaration - Still need to find a way to deal with mask_pil None typing errors * face(facetools): fix typing issues, add validation, clean up structure * feat(facetools): update field descriptions * Update FaceOff_FaceScale2x.json - update FaceOff workflow after Bounded Image field removed in place of inheriting Image out field from ImageOutput * feat(facetools): pass through original image on facemask if invalid face ids requested * feat(facetools): tidy variable names & fn calls * feat(facetools): bundle inter font, draw ids with it Inter is a SIL Open Font license. The license is included and is fully permissive. Inter is the same font the UI and commercial application already uses. Only the "regular" version is bundled. * chore(facetools): isort & fix mypy issues * docs(facetools): update and format docs --------- Co-authored-by: Millun Atluri <millun.atluri@gmail.com> Co-authored-by: Millun Atluri <Millu@users.noreply.github.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-29 07:54:13 +00:00
from typing import Optional, TypedDict
import cv2
import numpy as np
from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import]
from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps
from PIL.Image import Image as ImageType
from pydantic import validator
import invokeai.assets.fonts as font_assets
Nodes-FaceTools (FaceIdentifier, FaceOff, FaceMask) (#4576) * node-FaceTools * Added more documentation for facetools * invert FaceMask masking - FaceMask had face protected and surroundings change by default (face white, else black) - Change to how FaceOff/others work: the opposite where surroundings protected, face changes by default (face black, else white) * reflect changed facemask behaviour in docs * add FaceOff+FaceMask workflows - Add FaceOff and FaceMask example workflows to docs/workflows * add FaceMask+FaceOff workflows to exampleworkflows.md - used invokeai URL paths mimicking other workflow URLs, hopefully they translate when/if merged * inheriting, typehints, black/isort/flake8 - modified FaceMask and FaceOff output classes to inherit base image, height, width from ImageOutput - Added type annotations to helper functions, required some reworking of code's stored data * remove credit header - Was in my personal/repo copy, don't think it's necessary if merged. * Optionals & image declaration duplication - Added Optional[] to optional outputs and types - removed duplication of image = context.services.images.get_pil_images(self.image.image_name) declaration - Still need to find a way to deal with mask_pil None typing errors * face(facetools): fix typing issues, add validation, clean up structure * feat(facetools): update field descriptions * Update FaceOff_FaceScale2x.json - update FaceOff workflow after Bounded Image field removed in place of inheriting Image out field from ImageOutput * feat(facetools): pass through original image on facemask if invalid face ids requested * feat(facetools): tidy variable names & fn calls * feat(facetools): bundle inter font, draw ids with it Inter is a SIL Open Font license. The license is included and is fully permissive. Inter is the same font the UI and commercial application already uses. Only the "regular" version is bundled. * chore(facetools): isort & fix mypy issues * docs(facetools): update and format docs --------- Co-authored-by: Millun Atluri <millun.atluri@gmail.com> Co-authored-by: Millun Atluri <Millu@users.noreply.github.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-29 07:54:13 +00:00
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InputField,
InvocationContext,
OutputField,
invocation,
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.models.image import ImageCategory, ResourceOrigin
@invocation_output("face_mask_output")
class FaceMaskOutput(ImageOutput):
"""Base class for FaceMask output"""
mask: ImageField = OutputField(description="The output mask")
@invocation_output("face_off_output")
class FaceOffOutput(ImageOutput):
"""Base class for FaceOff Output"""
mask: ImageField = OutputField(description="The output mask")
x: int = OutputField(description="The x coordinate of the bounding box's left side")
y: int = OutputField(description="The y coordinate of the bounding box's top side")
class FaceResultData(TypedDict):
image: ImageType
mask: ImageType
x_center: float
y_center: float
mesh_width: int
mesh_height: int
class FaceResultDataWithId(FaceResultData):
face_id: int
class ExtractFaceData(TypedDict):
bounded_image: ImageType
bounded_mask: ImageType
x_min: int
y_min: int
x_max: int
y_max: int
class FaceMaskResult(TypedDict):
image: ImageType
mask: ImageType
def create_white_image(w: int, h: int) -> ImageType:
return Image.new("L", (w, h), color=255)
def create_black_image(w: int, h: int) -> ImageType:
return Image.new("L", (w, h), color=0)
FONT_SIZE = 32
FONT_STROKE_WIDTH = 4
def prepare_faces_list(
face_result_list: list[FaceResultData],
) -> list[FaceResultDataWithId]:
"""Deduplicates a list of faces, adding IDs to them."""
deduped_faces: list[FaceResultData] = []
if len(face_result_list) == 0:
return list()
for candidate in face_result_list:
should_add = True
candidate_x_center = candidate["x_center"]
candidate_y_center = candidate["y_center"]
for face in deduped_faces:
face_center_x = face["x_center"]
face_center_y = face["y_center"]
face_radius_w = face["mesh_width"] / 2
face_radius_h = face["mesh_height"] / 2
# Determine if the center of the candidate_face is inside the ellipse of the added face
# p < 1 -> Inside
# p = 1 -> Exactly on the ellipse
# p > 1 -> Outside
p = (math.pow((candidate_x_center - face_center_x), 2) / math.pow(face_radius_w, 2)) + (
math.pow((candidate_y_center - face_center_y), 2) / math.pow(face_radius_h, 2)
)
if p < 1: # Inside of the already-added face's radius
should_add = False
break
if should_add is True:
deduped_faces.append(candidate)
sorted_faces = sorted(deduped_faces, key=lambda x: x["y_center"])
sorted_faces = sorted(sorted_faces, key=lambda x: x["x_center"])
# add face_id for reference
sorted_faces_with_ids: list[FaceResultDataWithId] = []
face_id_counter = 0
for face in sorted_faces:
sorted_faces_with_ids.append(
FaceResultDataWithId(
**face,
face_id=face_id_counter,
)
)
face_id_counter += 1
return sorted_faces_with_ids
def generate_face_box_mask(
context: InvocationContext,
minimum_confidence: float,
x_offset: float,
y_offset: float,
pil_image: ImageType,
chunk_x_offset: int = 0,
chunk_y_offset: int = 0,
draw_mesh: bool = True,
) -> list[FaceResultData]:
result = []
mask_pil = None
# Convert the PIL image to a NumPy array.
np_image = np.array(pil_image, dtype=np.uint8)
# Check if the input image has four channels (RGBA).
if np_image.shape[2] == 4:
# Convert RGBA to RGB by removing the alpha channel.
np_image = np_image[:, :, :3]
# Create a FaceMesh object for face landmark detection and mesh generation.
face_mesh = FaceMesh(
max_num_faces=999,
min_detection_confidence=minimum_confidence,
min_tracking_confidence=minimum_confidence,
)
# Detect the face landmarks and mesh in the input image.
results = face_mesh.process(np_image)
# Check if any face is detected.
if results.multi_face_landmarks: # type: ignore # this are via protobuf and not typed
# Search for the face_id in the detected faces.
for face_id, face_landmarks in enumerate(results.multi_face_landmarks): # type: ignore #this are via protobuf and not typed
# Get the bounding box of the face mesh.
x_coordinates = [landmark.x for landmark in face_landmarks.landmark]
y_coordinates = [landmark.y for landmark in face_landmarks.landmark]
x_min, x_max = min(x_coordinates), max(x_coordinates)
y_min, y_max = min(y_coordinates), max(y_coordinates)
# Calculate the width and height of the face mesh.
mesh_width = int((x_max - x_min) * np_image.shape[1])
mesh_height = int((y_max - y_min) * np_image.shape[0])
# Get the center of the face.
x_center = np.mean([landmark.x * np_image.shape[1] for landmark in face_landmarks.landmark])
y_center = np.mean([landmark.y * np_image.shape[0] for landmark in face_landmarks.landmark])
face_landmark_points = np.array(
[
[landmark.x * np_image.shape[1], landmark.y * np_image.shape[0]]
for landmark in face_landmarks.landmark
]
)
# Apply the scaling offsets to the face landmark points with a multiplier.
scale_multiplier = 0.2
x_center = np.mean(face_landmark_points[:, 0])
y_center = np.mean(face_landmark_points[:, 1])
if draw_mesh:
x_scaled = face_landmark_points[:, 0] + scale_multiplier * x_offset * (
face_landmark_points[:, 0] - x_center
)
y_scaled = face_landmark_points[:, 1] + scale_multiplier * y_offset * (
face_landmark_points[:, 1] - y_center
)
convex_hull = cv2.convexHull(np.column_stack((x_scaled, y_scaled)).astype(np.int32))
# Generate a binary face mask using the face mesh.
mask_image = np.ones(np_image.shape[:2], dtype=np.uint8) * 255
cv2.fillConvexPoly(mask_image, convex_hull, 0)
# Convert the binary mask image to a PIL Image.
init_mask_pil = Image.fromarray(mask_image, mode="L")
w, h = init_mask_pil.size
mask_pil = create_white_image(w + chunk_x_offset, h + chunk_y_offset)
mask_pil.paste(init_mask_pil, (chunk_x_offset, chunk_y_offset))
left_side = x_center - mesh_width
right_side = x_center + mesh_width
top_side = y_center - mesh_height
bottom_side = y_center + mesh_height
im_width, im_height = pil_image.size
over_w = im_width * 0.1
over_h = im_height * 0.1
if (
(left_side >= -over_w)
and (right_side < im_width + over_w)
and (top_side >= -over_h)
and (bottom_side < im_height + over_h)
):
x_center = float(x_center)
y_center = float(y_center)
face = FaceResultData(
image=pil_image,
mask=mask_pil or create_white_image(*pil_image.size),
x_center=x_center + chunk_x_offset,
y_center=y_center + chunk_y_offset,
mesh_width=mesh_width,
mesh_height=mesh_height,
)
result.append(face)
else:
context.services.logger.info("FaceTools --> Face out of bounds, ignoring.")
return result
def extract_face(
context: InvocationContext,
image: ImageType,
face: FaceResultData,
padding: int,
) -> ExtractFaceData:
mask = face["mask"]
center_x = face["x_center"]
center_y = face["y_center"]
mesh_width = face["mesh_width"]
mesh_height = face["mesh_height"]
# Determine the minimum size of the square crop
min_size = min(mask.width, mask.height)
# Calculate the crop boundaries for the output image and mask.
mesh_width += 128 + padding # add pixels to account for mask variance
mesh_height += 128 + padding # add pixels to account for mask variance
crop_size = min(
max(mesh_width, mesh_height, 128), min_size
) # Choose the smaller of the two (given value or face mask size)
if crop_size > 128:
crop_size = (crop_size + 7) // 8 * 8 # Ensure crop side is multiple of 8
# Calculate the actual crop boundaries within the bounds of the original image.
x_min = int(center_x - crop_size / 2)
y_min = int(center_y - crop_size / 2)
x_max = int(center_x + crop_size / 2)
y_max = int(center_y + crop_size / 2)
# Adjust the crop boundaries to stay within the original image's dimensions
if x_min < 0:
context.services.logger.warning("FaceTools --> -X-axis padding reached image edge.")
x_max -= x_min
x_min = 0
elif x_max > mask.width:
context.services.logger.warning("FaceTools --> +X-axis padding reached image edge.")
x_min -= x_max - mask.width
x_max = mask.width
if y_min < 0:
context.services.logger.warning("FaceTools --> +Y-axis padding reached image edge.")
y_max -= y_min
y_min = 0
elif y_max > mask.height:
context.services.logger.warning("FaceTools --> -Y-axis padding reached image edge.")
y_min -= y_max - mask.height
y_max = mask.height
# Ensure the crop is square and adjust the boundaries if needed
if x_max - x_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting x-axis padding to constrain bounding box to a square.")
diff = crop_size - (x_max - x_min)
x_min -= diff // 2
x_max += diff - diff // 2
if y_max - y_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting y-axis padding to constrain bounding box to a square.")
diff = crop_size - (y_max - y_min)
y_min -= diff // 2
y_max += diff - diff // 2
context.services.logger.info(f"FaceTools --> Calculated bounding box (8 multiple): {crop_size}")
# Crop the output image to the specified size with the center of the face mesh as the center.
mask = mask.crop((x_min, y_min, x_max, y_max))
bounded_image = image.crop((x_min, y_min, x_max, y_max))
# blur mask edge by small radius
mask = mask.filter(ImageFilter.GaussianBlur(radius=2))
return ExtractFaceData(
bounded_image=bounded_image,
bounded_mask=mask,
x_min=x_min,
y_min=y_min,
x_max=x_max,
y_max=y_max,
)
def get_faces_list(
context: InvocationContext,
image: ImageType,
should_chunk: bool,
minimum_confidence: float,
x_offset: float,
y_offset: float,
draw_mesh: bool = True,
) -> list[FaceResultDataWithId]:
result = []
# Generate the face box mask and get the center of the face.
if not should_chunk:
context.services.logger.info("FaceTools --> Attempting full image face detection.")
result = generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
x_offset=x_offset,
y_offset=y_offset,
pil_image=image,
chunk_x_offset=0,
chunk_y_offset=0,
draw_mesh=draw_mesh,
)
if should_chunk or len(result) == 0:
context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
width, height = image.size
image_chunks = []
x_offsets = []
y_offsets = []
result = []
# If width == height, there's nothing more we can do... otherwise...
if width > height:
# Landscape - slice the image horizontally
fx = 0.0
steps = int(width * 2 / height)
while fx <= (width - height):
x = int(fx)
image_chunks.append(image.crop((x, 0, x + height - 1, height - 1)))
x_offsets.append(x)
y_offsets.append(0)
fx += (width - height) / steps
context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}")
elif height > width:
# Portrait - slice the image vertically
fy = 0.0
steps = int(height * 2 / width)
while fy <= (height - width):
y = int(fy)
image_chunks.append(image.crop((0, y, width - 1, y + width - 1)))
x_offsets.append(0)
y_offsets.append(y)
fy += (height - width) / steps
context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}")
for idx in range(len(image_chunks)):
context.services.logger.info(f"FaceTools --> Evaluating faces in chunk {idx}")
result = result + generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
x_offset=x_offset,
y_offset=y_offset,
pil_image=image_chunks[idx],
chunk_x_offset=x_offsets[idx],
chunk_y_offset=y_offsets[idx],
draw_mesh=draw_mesh,
)
if len(result) == 0:
# Give up
context.services.logger.warning(
"FaceTools --> No face detected in chunked input image. Passing through original image."
)
all_faces = prepare_faces_list(result)
return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.0.0")
class FaceOffInvocation(BaseInvocation):
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
image: ImageField = InputField(description="Image for face detection")
face_id: int = InputField(
default=0,
ge=0,
description="The face ID to process, numbered from 0. Multiple faces not supported. Find a face's ID with FaceIdentifier node.",
)
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
x_offset: float = InputField(default=0.0, description="X-axis offset of the mask")
y_offset: float = InputField(default=0.0, description="Y-axis offset of the mask")
padding: int = InputField(default=0, description="All-axis padding around the mask in pixels")
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
def faceoff(self, context: InvocationContext, image: ImageType) -> Optional[ExtractFaceData]:
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=self.x_offset,
y_offset=self.y_offset,
draw_mesh=True,
)
if len(all_faces) == 0:
context.services.logger.warning("FaceOff --> No faces detected. Passing through original image.")
return None
if self.face_id > len(all_faces) - 1:
context.services.logger.warning(
f"FaceOff --> Face ID {self.face_id} is outside of the number of faces detected ({len(all_faces)}). Passing through original image."
)
return None
face_data = extract_face(context=context, image=image, face=all_faces[self.face_id], padding=self.padding)
# Convert the input image to RGBA mode to ensure it has an alpha channel.
face_data["bounded_image"] = face_data["bounded_image"].convert("RGBA")
return face_data
def invoke(self, context: InvocationContext) -> FaceOffOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result = self.faceoff(context=context, image=image)
if result is None:
result_image = image
result_mask = create_white_image(*image.size)
x = 0
y = 0
else:
result_image = result["bounded_image"]
result_mask = result["bounded_mask"]
x = result["x_min"]
y = result["y_min"]
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
mask_dto = context.services.images.create(
image=result_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceOffOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
mask=ImageField(image_name=mask_dto.image_name),
x=x,
y=y,
)
return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.0.0")
class FaceMaskInvocation(BaseInvocation):
"""Face mask creation using mediapipe face detection"""
image: ImageField = InputField(description="Image to face detect")
face_ids: str = InputField(
default="",
description="Comma-separated list of face ids to mask eg '0,2,7'. Numbered from 0. Leave empty to mask all. Find face IDs with FaceIdentifier node.",
)
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
x_offset: float = InputField(default=0.0, description="Offset for the X-axis of the face mask")
y_offset: float = InputField(default=0.0, description="Offset for the Y-axis of the face mask")
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
invert_mask: bool = InputField(default=False, description="Toggle to invert the mask")
@validator("face_ids")
def validate_comma_separated_ints(cls, v) -> str:
comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$")
if comma_separated_ints_regex.match(v) is None:
raise ValueError('Face IDs must be a comma-separated list of integers (e.g. "1,2,3")')
return v
def facemask(self, context: InvocationContext, image: ImageType) -> FaceMaskResult:
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=self.x_offset,
y_offset=self.y_offset,
draw_mesh=True,
)
mask_pil = create_white_image(*image.size)
id_range = list(range(0, len(all_faces)))
ids_to_extract = id_range
if self.face_ids != "":
parsed_face_ids = [int(id) for id in self.face_ids.split(",")]
# get requested face_ids that are in range
intersected_face_ids = set(parsed_face_ids) & set(id_range)
if len(intersected_face_ids) == 0:
id_range_str = ",".join([str(id) for id in id_range])
context.services.logger.warning(
f"Face IDs must be in range of detected faces - requested {self.face_ids}, detected {id_range_str}. Passing through original image."
)
return FaceMaskResult(
image=image, # original image
mask=mask_pil, # white mask
)
ids_to_extract = list(intersected_face_ids)
for face_id in ids_to_extract:
face_data = extract_face(context=context, image=image, face=all_faces[face_id], padding=0)
face_mask_pil = face_data["bounded_mask"]
x_min = face_data["x_min"]
y_min = face_data["y_min"]
x_max = face_data["x_max"]
y_max = face_data["y_max"]
mask_pil.paste(
create_black_image(x_max - x_min, y_max - y_min),
box=(x_min, y_min),
mask=ImageOps.invert(face_mask_pil),
)
if self.invert_mask:
mask_pil = ImageOps.invert(mask_pil)
# Create an RGBA image with transparency
image = image.convert("RGBA")
return FaceMaskResult(
image=image,
mask=mask_pil,
)
def invoke(self, context: InvocationContext) -> FaceMaskOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result = self.facemask(context=context, image=image)
image_dto = context.services.images.create(
image=result["image"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
mask_dto = context.services.images.create(
image=result["mask"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceMaskOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
mask=ImageField(image_name=mask_dto.image_name),
)
return output
@invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.0.0"
)
class FaceIdentifierInvocation(BaseInvocation):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
image: ImageField = InputField(description="Image to face detect")
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
def faceidentifier(self, context: InvocationContext, image: ImageType) -> ImageType:
image = image.copy()
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=0,
y_offset=0,
draw_mesh=False,
)
# Note - font may be found either in the repo if running an editable install, or in the venv if running a package install
font_path = [x for x in [Path(y, "inter/Inter-Regular.ttf") for y in font_assets.__path__] if x.exists()]
font = ImageFont.truetype(font_path[0].as_posix(), FONT_SIZE)
Nodes-FaceTools (FaceIdentifier, FaceOff, FaceMask) (#4576) * node-FaceTools * Added more documentation for facetools * invert FaceMask masking - FaceMask had face protected and surroundings change by default (face white, else black) - Change to how FaceOff/others work: the opposite where surroundings protected, face changes by default (face black, else white) * reflect changed facemask behaviour in docs * add FaceOff+FaceMask workflows - Add FaceOff and FaceMask example workflows to docs/workflows * add FaceMask+FaceOff workflows to exampleworkflows.md - used invokeai URL paths mimicking other workflow URLs, hopefully they translate when/if merged * inheriting, typehints, black/isort/flake8 - modified FaceMask and FaceOff output classes to inherit base image, height, width from ImageOutput - Added type annotations to helper functions, required some reworking of code's stored data * remove credit header - Was in my personal/repo copy, don't think it's necessary if merged. * Optionals & image declaration duplication - Added Optional[] to optional outputs and types - removed duplication of image = context.services.images.get_pil_images(self.image.image_name) declaration - Still need to find a way to deal with mask_pil None typing errors * face(facetools): fix typing issues, add validation, clean up structure * feat(facetools): update field descriptions * Update FaceOff_FaceScale2x.json - update FaceOff workflow after Bounded Image field removed in place of inheriting Image out field from ImageOutput * feat(facetools): pass through original image on facemask if invalid face ids requested * feat(facetools): tidy variable names & fn calls * feat(facetools): bundle inter font, draw ids with it Inter is a SIL Open Font license. The license is included and is fully permissive. Inter is the same font the UI and commercial application already uses. Only the "regular" version is bundled. * chore(facetools): isort & fix mypy issues * docs(facetools): update and format docs --------- Co-authored-by: Millun Atluri <millun.atluri@gmail.com> Co-authored-by: Millun Atluri <Millu@users.noreply.github.com> Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-29 07:54:13 +00:00
# Paste face IDs on the output image
draw = ImageDraw.Draw(image)
for face in all_faces:
x_coord = face["x_center"]
y_coord = face["y_center"]
text = str(face["face_id"])
# get bbox of the text so we can center the id on the face
_, _, bbox_w, bbox_h = draw.textbbox(xy=(0, 0), text=text, font=font, stroke_width=FONT_STROKE_WIDTH)
x = x_coord - bbox_w / 2
y = y_coord - bbox_h / 2
draw.text(
xy=(x, y),
text=str(text),
fill=(255, 255, 255, 255),
font=font,
stroke_width=FONT_STROKE_WIDTH,
stroke_fill=(0, 0, 0, 255),
)
# Create an RGBA image with transparency
image = image.convert("RGBA")
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result_image = self.faceidentifier(context=context, image=image)
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=self.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)