InvokeAI/invokeai/backend/image_util/basicsr/rrdbnet_arch.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

126 lines
4.7 KiB
Python
Raw Normal View History

import torch
from torch import nn as nn
from torch.nn import functional as F
from invokeai.backend.image_util.basicsr.arch_util import default_init_weights, make_layer, pixel_unshuffle
class ResidualDenseBlock(nn.Module):
"""Residual Dense Block.
Used in RRDB block in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat: int = 64, num_grow_ch: int = 32) -> None:
super(ResidualDenseBlock, self).__init__()
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
# Empirically, we use 0.2 to scale the residual for better performance
return x5 * 0.2 + x
class RRDB(nn.Module):
"""Residual in Residual Dense Block.
Used in RRDB-Net in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat: int, num_grow_ch: int = 32) -> None:
super(RRDB, self).__init__()
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.rdb1(x)
out = self.rdb2(out)
out = self.rdb3(out)
# Empirically, we use 0.2 to scale the residual for better performance
return out * 0.2 + x
class RRDBNet(nn.Module):
"""Networks consisting of Residual in Residual Dense Block, which is used
in ESRGAN.
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
We extend ESRGAN for scale x2 and scale x1.
Note: This is one option for scale 1, scale 2 in RRDBNet.
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
Args:
num_in_ch (int): Channel number of inputs.
num_out_ch (int): Channel number of outputs.
num_feat (int): Channel number of intermediate features.
Default: 64
num_block (int): Block number in the trunk network. Defaults: 23
num_grow_ch (int): Channels for each growth. Default: 32.
"""
def __init__(
self,
num_in_ch: int,
num_out_ch: int,
scale: int = 4,
num_feat: int = 64,
num_block: int = 23,
num_grow_ch: int = 32,
) -> None:
super(RRDBNet, self).__init__()
self.scale = scale
if scale == 2:
num_in_ch = num_in_ch * 4
elif scale == 1:
num_in_ch = num_in_ch * 16
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
# upsample
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.scale == 2:
feat = pixel_unshuffle(x, scale=2)
elif self.scale == 1:
feat = pixel_unshuffle(x, scale=4)
else:
feat = x
feat = self.conv_first(feat)
body_feat = self.conv_body(self.body(feat))
feat = feat + body_feat
# upsample
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode="nearest")))
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode="nearest")))
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
return out