InvokeAI/invokeai/backend/stable_diffusion/extensions/base.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

73 lines
2.5 KiB
Python
Raw Normal View History

2024-07-16 17:03:29 +00:00
from __future__ import annotations
2024-07-12 17:31:26 +00:00
from contextlib import contextmanager
from dataclasses import dataclass
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Set, Tuple
2024-07-12 17:31:26 +00:00
import torch
from diffusers import UNet2DConditionModel
2024-07-16 17:03:29 +00:00
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
2024-07-16 17:03:29 +00:00
2024-07-12 17:31:26 +00:00
@dataclass
class CallbackMetadata:
callback_type: ExtensionCallbackType
order: int
@dataclass
class CallbackFunctionWithMetadata:
metadata: CallbackMetadata
function: Callable[[DenoiseContext], None]
def callback(callback_type: ExtensionCallbackType, order: int = 0):
def _decorator(function):
function._ext_metadata = CallbackMetadata(
callback_type=callback_type,
order=order,
)
return function
2024-07-12 17:31:26 +00:00
return _decorator
class ExtensionBase:
2024-07-12 21:44:21 +00:00
def __init__(self):
self._callbacks: Dict[ExtensionCallbackType, List[CallbackFunctionWithMetadata]] = {}
# Register all of the callback methods for this instance.
2024-07-12 17:31:26 +00:00
for func_name in dir(self):
func = getattr(self, func_name)
metadata = getattr(func, "_ext_metadata", None)
if metadata is not None and isinstance(metadata, CallbackMetadata):
if metadata.callback_type not in self._callbacks:
self._callbacks[metadata.callback_type] = []
self._callbacks[metadata.callback_type].append(CallbackFunctionWithMetadata(metadata, func))
def get_callbacks(self):
return self._callbacks
2024-07-12 17:31:26 +00:00
@contextmanager
def patch_extension(self, ctx: DenoiseContext):
2024-07-12 17:31:26 +00:00
yield None
@contextmanager
def patch_unet(
self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None
) -> Tuple[Set[str], Dict[str, torch.Tensor]]:
"""Apply patches to UNet model. This function responsible for restoring all changes except weights,
changed weights should only be reported in return.
Return contains 2 values:
- Set of cached weights, just keys from cached_weights dictionary
- Dict of not cached weights that should be copies on the cpu device
Args:
unet (UNet2DConditionModel): The UNet model on execution device to patch.
cached_weights (Optional[Dict[str, torch.Tensor]]): Read-only copy of the model's state dict in CPU, for caches purposes.
"""
yield set(), {}