InvokeAI/invokeai/app/invocations/flux_text_to_image.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

186 lines
7.2 KiB
Python
Raw Normal View History

from typing import Optional
import torch
2024-08-22 15:29:59 +00:00
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
2024-08-15 14:27:42 +00:00
from invokeai.app.invocations.model import TransformerField, VAEField
from invokeai.app.invocations.primitives import LatentsOutput
2024-08-26 17:14:48 +00:00
from invokeai.app.services.session_processor.session_processor_common import CanceledException
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.model import Flux
from invokeai.backend.flux.sampling import denoise, get_noise, get_schedule, prepare_latent_img_patches, unpack
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
2024-08-16 20:22:49 +00:00
from invokeai.backend.util.devices import TorchDevice
EPS = 1e-6
@invocation(
"flux_text_to_image",
title="FLUX Text to Image",
tags=["image", "flux"],
category="image",
version="2.0.0",
2024-08-22 15:29:59 +00:00
classification=Classification.Prototype,
)
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Text-to-image generation using a FLUX model."""
# If latents is provided, this means we are doing image-to-image.
latents: Optional[LatentsField] = InputField(
default=None,
description=FieldDescriptions.latents,
input=Input.Connection,
)
denoising_start: float = InputField(
default=0.0,
ge=0,
le=1,
description=FieldDescriptions.denoising_start,
)
transformer: TransformerField = InputField(
2024-08-21 13:45:22 +00:00
description=FieldDescriptions.flux_model,
input=Input.Connection,
title="Transformer",
2024-08-12 18:04:23 +00:00
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
positive_text_conditioning: FluxConditioningField = InputField(
description=FieldDescriptions.positive_cond, input=Input.Connection
)
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
2024-08-21 13:45:22 +00:00
num_steps: int = InputField(
default=4, description="Number of diffusion steps. Recommended values are schnell: 4, dev: 50."
2024-08-21 13:45:22 +00:00
)
guidance: float = InputField(
default=4.0,
2024-08-21 13:45:22 +00:00
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images. FLUX dev only, ignored for schnell.",
)
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
latents = latents.detach().to("cpu")
name = context.tensors.save(tensor=latents)
return LatentsOutput.build(latents_name=name, latents=latents, seed=None)
def _run_diffusion(
self,
context: InvocationContext,
):
inference_dtype = torch.bfloat16
# Load the conditioning data.
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
assert len(cond_data.conditionings) == 1
flux_conditioning = cond_data.conditionings[0]
assert isinstance(flux_conditioning, FLUXConditioningInfo)
flux_conditioning = flux_conditioning.to(dtype=inference_dtype)
t5_embeddings = flux_conditioning.t5_embeds
clip_embeddings = flux_conditioning.clip_embeds
# Load the input latents, if provided.
init_latents = context.tensors.load(self.latents.latents_name) if self.latents else None
if init_latents is not None:
init_latents = init_latents.to(device=TorchDevice.choose_torch_device(), dtype=inference_dtype)
# Prepare input noise.
x = get_noise(
num_samples=1,
height=self.height,
width=self.width,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
seed=self.seed,
)
transformer_info = context.models.load(self.transformer.transformer)
2024-08-22 16:03:54 +00:00
is_schnell = "schnell" in transformer_info.config.config_path
timesteps = get_schedule(
num_steps=self.num_steps,
image_seq_len=x.shape[1],
shift=not is_schnell,
)
# Prepare inputs for image-to-image case.
if self.denoising_start > EPS:
if init_latents is None:
raise ValueError("latents must be provided if denoising_start > 0.")
# Clip the timesteps schedule based on denoising_start.
# TODO(ryand): Should we apply denoising_start in timestep-space rather than timestep-index-space?
start_idx = int(self.denoising_start * len(timesteps))
timesteps = timesteps[start_idx:]
# Noise the orig_latents by the appropriate amount for the first timestep.
t_0 = timesteps[0]
x = t_0 * x + (1.0 - t_0) * init_latents
x, img_ids = prepare_latent_img_patches(x)
bs, t5_seq_len, _ = t5_embeddings.shape
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
with transformer_info as transformer:
assert isinstance(transformer, Flux)
2024-08-16 20:22:49 +00:00
def step_callback() -> None:
if context.util.is_canceled():
raise CanceledException
# TODO: Make this look like the image before re-enabling
# latent_image = unpack(img.float(), self.height, self.width)
# latent_image = latent_image.squeeze() # Remove unnecessary dimensions
# flattened_tensor = latent_image.reshape(-1) # Flatten to shape [48*128*128]
# # Create a new tensor of the required shape [255, 255, 3]
# latent_image = flattened_tensor[: 255 * 255 * 3].reshape(255, 255, 3) # Reshape to RGB format
# # Convert to a NumPy array and then to a PIL Image
# image = Image.fromarray(latent_image.cpu().numpy().astype(np.uint8))
# (width, height) = image.size
# width *= 8
# height *= 8
# dataURL = image_to_dataURL(image, image_format="JPEG")
# # TODO: move this whole function to invocation context to properly reference these variables
# context._services.events.emit_invocation_denoise_progress(
# context._data.queue_item,
# context._data.invocation,
# state,
# ProgressImage(dataURL=dataURL, width=width, height=height),
# )
2024-08-16 20:22:49 +00:00
x = denoise(
model=transformer,
img=x,
2024-08-16 20:22:49 +00:00
img_ids=img_ids,
txt=t5_embeddings,
txt_ids=txt_ids,
vec=clip_embeddings,
timesteps=timesteps,
step_callback=step_callback,
2024-08-16 20:22:49 +00:00
guidance=self.guidance,
)
2024-08-16 20:22:49 +00:00
x = unpack(x.float(), self.height, self.width)
return x