mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
57 lines
1.6 KiB
Python
57 lines
1.6 KiB
Python
|
import torch
|
||
|
from typing import Optional
|
||
|
from .base import (
|
||
|
ModelBase,
|
||
|
ModelConfigBase,
|
||
|
BaseModelType,
|
||
|
ModelType,
|
||
|
SubModelType,
|
||
|
)
|
||
|
# TODO: naming
|
||
|
from ..lora import TextualInversionModel as TextualInversionModelRaw
|
||
|
|
||
|
class TextualInversionModel(ModelBase):
|
||
|
#model_size: int
|
||
|
|
||
|
class Config(ModelConfigBase):
|
||
|
format: None
|
||
|
|
||
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||
|
assert model_type == ModelType.TextualInversion
|
||
|
super().__init__(model_path, base_model, model_type)
|
||
|
|
||
|
self.model_size = os.path.getsize(self.model_path)
|
||
|
|
||
|
def get_size(self, child_type: Optional[SubModelType] = None):
|
||
|
if child_type is not None:
|
||
|
raise Exception("There is no child models in textual inversion")
|
||
|
return self.model_size
|
||
|
|
||
|
def get_model(
|
||
|
self,
|
||
|
torch_dtype: Optional[torch.dtype],
|
||
|
child_type: Optional[SubModelType] = None,
|
||
|
):
|
||
|
if child_type is not None:
|
||
|
raise Exception("There is no child models in textual inversion")
|
||
|
|
||
|
model = TextualInversionModelRaw.from_checkpoint(
|
||
|
file_path=self.model_path,
|
||
|
dtype=torch_dtype,
|
||
|
)
|
||
|
|
||
|
self.model_size = model.embedding.nelement() * model.embedding.element_size()
|
||
|
return model
|
||
|
|
||
|
@classmethod
|
||
|
def save_to_config(cls) -> bool:
|
||
|
return False
|
||
|
|
||
|
@classmethod
|
||
|
def detect_format(cls, path: str):
|
||
|
return None
|
||
|
|
||
|
@staticmethod
|
||
|
def convert_if_required(model_path: str, cache_path: str, config: Optional[dict]) -> str:
|
||
|
return model_path
|