2023-08-01 21:44:09 +00:00
|
|
|
# Copyright 2023 Lincoln D. Stein <lincoln.stein@gmail.com>
|
|
|
|
"""Utility to collect execution time and GPU usage stats on invocations in flight"""
|
|
|
|
|
|
|
|
"""
|
|
|
|
Usage:
|
2023-08-02 22:10:52 +00:00
|
|
|
|
|
|
|
statistics = InvocationStatsService(graph_execution_manager)
|
|
|
|
with statistics.collect_stats(invocation, graph_execution_state.id):
|
|
|
|
... execute graphs...
|
2023-08-01 21:44:09 +00:00
|
|
|
statistics.log_stats()
|
|
|
|
|
|
|
|
Typical output:
|
2023-08-02 22:10:52 +00:00
|
|
|
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
|
|
|
|
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
|
|
|
|
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
|
|
|
|
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
|
|
|
|
|
|
|
|
The abstract base class for this class is InvocationStatsServiceBase. An implementing class which
|
|
|
|
writes to the system log is stored in InvocationServices.performance_statistics.
|
2023-08-01 21:44:09 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
import time
|
2023-08-02 22:10:52 +00:00
|
|
|
from abc import ABC, abstractmethod
|
|
|
|
from contextlib import AbstractContextManager
|
|
|
|
from dataclasses import dataclass, field
|
|
|
|
from typing import Dict
|
2023-08-01 21:44:09 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
|
2023-08-02 22:10:52 +00:00
|
|
|
import invokeai.backend.util.logging as logger
|
|
|
|
|
2023-08-01 21:44:09 +00:00
|
|
|
from ..invocations.baseinvocation import BaseInvocation
|
2023-08-02 22:10:52 +00:00
|
|
|
from .graph import GraphExecutionState
|
|
|
|
from .item_storage import ItemStorageABC
|
2023-08-01 21:44:09 +00:00
|
|
|
|
|
|
|
|
2023-08-02 22:10:52 +00:00
|
|
|
class InvocationStatsServiceBase(ABC):
|
|
|
|
"Abstract base class for recording node memory/time performance statistics"
|
2023-08-01 23:39:42 +00:00
|
|
|
|
2023-08-02 22:10:52 +00:00
|
|
|
@abstractmethod
|
|
|
|
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
|
|
|
|
"""
|
|
|
|
Initialize the InvocationStatsService and reset counters to zero
|
|
|
|
:param graph_execution_manager: Graph execution manager for this session
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def collect_stats(
|
|
|
|
self,
|
|
|
|
invocation: BaseInvocation,
|
|
|
|
graph_execution_state_id: str,
|
|
|
|
) -> AbstractContextManager:
|
|
|
|
"""
|
|
|
|
Return a context object that will capture the statistics on the execution
|
|
|
|
of invocaation. Use with: to place around the part of the code that executes the invocation.
|
|
|
|
:param invocation: BaseInvocation object from the current graph.
|
|
|
|
:param graph_execution_state: GraphExecutionState object from the current session.
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def reset_stats(self, graph_execution_state_id: str):
|
|
|
|
"""
|
|
|
|
Reset all statistics for the indicated graph
|
|
|
|
:param graph_execution_state_id
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def reset_all_stats(self):
|
|
|
|
"""Zero all statistics"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def update_invocation_stats(
|
|
|
|
self,
|
|
|
|
graph_id: str,
|
|
|
|
invocation_type: str,
|
|
|
|
time_used: float,
|
|
|
|
vram_used: float,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Add timing information on execution of a node. Usually
|
|
|
|
used internally.
|
|
|
|
:param graph_id: ID of the graph that is currently executing
|
|
|
|
:param invocation_type: String literal type of the node
|
|
|
|
:param time_used: Time used by node's exection (sec)
|
|
|
|
:param vram_used: Maximum VRAM used during exection (GB)
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def log_stats(self):
|
|
|
|
"""
|
|
|
|
Write out the accumulated statistics to the log or somewhere else.
|
|
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class NodeStats:
|
|
|
|
"""Class for tracking execution stats of an invocation node"""
|
|
|
|
|
|
|
|
calls: int = 0
|
|
|
|
time_used: float = 0.0 # seconds
|
|
|
|
max_vram: float = 0.0 # GB
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class NodeLog:
|
|
|
|
"""Class for tracking node usage"""
|
|
|
|
|
|
|
|
# {node_type => NodeStats}
|
|
|
|
nodes: Dict[str, NodeStats] = field(default_factory=dict)
|
|
|
|
|
|
|
|
|
|
|
|
class InvocationStatsService(InvocationStatsServiceBase):
|
2023-08-01 21:44:09 +00:00
|
|
|
"""Accumulate performance information about a running graph. Collects time spent in each node,
|
|
|
|
as well as the maximum and current VRAM utilisation for CUDA systems"""
|
|
|
|
|
2023-08-02 22:10:52 +00:00
|
|
|
def __init__(self, graph_execution_manager: ItemStorageABC["GraphExecutionState"]):
|
|
|
|
self.graph_execution_manager = graph_execution_manager
|
|
|
|
# {graph_id => NodeLog}
|
|
|
|
self._stats: Dict[str, NodeLog] = {}
|
2023-08-01 23:39:42 +00:00
|
|
|
|
|
|
|
class StatsContext:
|
2023-08-02 22:10:52 +00:00
|
|
|
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
|
2023-08-01 21:44:09 +00:00
|
|
|
self.invocation = invocation
|
|
|
|
self.collector = collector
|
2023-08-02 22:10:52 +00:00
|
|
|
self.graph_id = graph_id
|
2023-08-01 21:44:09 +00:00
|
|
|
self.start_time = 0
|
|
|
|
|
|
|
|
def __enter__(self):
|
|
|
|
self.start_time = time.time()
|
2023-08-02 22:10:52 +00:00
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.reset_peak_memory_stats()
|
2023-08-01 21:44:09 +00:00
|
|
|
|
|
|
|
def __exit__(self, *args):
|
2023-08-02 22:10:52 +00:00
|
|
|
self.collector.update_invocation_stats(
|
|
|
|
self.graph_id,
|
|
|
|
self.invocation.type,
|
|
|
|
time.time() - self.start_time,
|
|
|
|
torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
|
|
|
|
)
|
2023-08-01 23:39:42 +00:00
|
|
|
|
|
|
|
def collect_stats(
|
|
|
|
self,
|
|
|
|
invocation: BaseInvocation,
|
2023-08-02 22:10:52 +00:00
|
|
|
graph_execution_state_id: str,
|
2023-08-01 23:39:42 +00:00
|
|
|
) -> StatsContext:
|
2023-08-01 21:44:09 +00:00
|
|
|
"""
|
|
|
|
Return a context object that will capture the statistics.
|
|
|
|
:param invocation: BaseInvocation object from the current graph.
|
|
|
|
:param graph_execution_state: GraphExecutionState object from the current session.
|
|
|
|
"""
|
2023-08-02 22:10:52 +00:00
|
|
|
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
|
|
|
|
self._stats[graph_execution_state_id] = NodeLog()
|
|
|
|
return self.StatsContext(invocation, graph_execution_state_id, self)
|
|
|
|
|
|
|
|
def reset_all_stats(self):
|
|
|
|
"""Zero all statistics"""
|
|
|
|
self._stats = {}
|
|
|
|
|
|
|
|
def reset_stats(self, graph_execution_id: str):
|
|
|
|
"""Zero the statistics for the indicated graph."""
|
|
|
|
try:
|
|
|
|
self._stats.pop(graph_execution_id)
|
|
|
|
except KeyError:
|
|
|
|
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
|
|
|
|
|
|
|
|
def update_invocation_stats(self, graph_id: str, invocation_type: str, time_used: float, vram_used: float):
|
2023-08-01 21:44:09 +00:00
|
|
|
"""
|
|
|
|
Add timing information on execution of a node. Usually
|
|
|
|
used internally.
|
2023-08-02 22:10:52 +00:00
|
|
|
:param graph_id: ID of the graph that is currently executing
|
2023-08-01 21:44:09 +00:00
|
|
|
:param invocation_type: String literal type of the node
|
|
|
|
:param time_used: Floating point seconds used by node's exection
|
|
|
|
"""
|
2023-08-02 22:10:52 +00:00
|
|
|
if not self._stats[graph_id].nodes.get(invocation_type):
|
|
|
|
self._stats[graph_id].nodes[invocation_type] = NodeStats()
|
|
|
|
stats = self._stats[graph_id].nodes[invocation_type]
|
|
|
|
stats.calls += 1
|
|
|
|
stats.time_used += time_used
|
|
|
|
stats.max_vram = max(stats.max_vram, vram_used)
|
2023-08-01 23:39:42 +00:00
|
|
|
|
2023-08-01 21:44:09 +00:00
|
|
|
def log_stats(self):
|
|
|
|
"""
|
|
|
|
Send the statistics to the system logger at the info level.
|
|
|
|
Stats will only be printed if when the execution of the graph
|
|
|
|
is complete.
|
|
|
|
"""
|
2023-08-02 22:10:52 +00:00
|
|
|
completed = set()
|
|
|
|
for graph_id, node_log in self._stats.items():
|
|
|
|
current_graph_state = self.graph_execution_manager.get(graph_id)
|
|
|
|
if not current_graph_state.is_complete():
|
|
|
|
continue
|
|
|
|
|
|
|
|
total_time = 0
|
|
|
|
logger.info(f"Graph stats: {graph_id}")
|
2023-08-03 12:47:56 +00:00
|
|
|
logger.info("Node Calls Seconds VRAM Used")
|
2023-08-02 22:10:52 +00:00
|
|
|
for node_type, stats in self._stats[graph_id].nodes.items():
|
2023-08-03 12:47:56 +00:00
|
|
|
logger.info(f"{node_type:<20} {stats.calls:>5} {stats.time_used:7.3f}s {stats.max_vram:4.2f}G")
|
2023-08-02 22:10:52 +00:00
|
|
|
total_time += stats.time_used
|
|
|
|
|
2023-08-03 12:47:56 +00:00
|
|
|
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
|
2023-08-01 21:44:09 +00:00
|
|
|
if torch.cuda.is_available():
|
2023-08-01 23:39:42 +00:00
|
|
|
logger.info("Current VRAM utilization " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
|
2023-08-02 22:10:52 +00:00
|
|
|
|
|
|
|
completed.add(graph_id)
|
|
|
|
|
|
|
|
for graph_id in completed:
|
|
|
|
del self._stats[graph_id]
|