InvokeAI/invokeai/app/invocations/latents_to_image.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

155 lines
6.4 KiB
Python
Raw Normal View History

from contextlib import nullcontext
import torch
from diffusers.image_processor import VaeImageProcessor
from diffusers.models.attention_processor import (
AttnProcessor2_0,
LoRAAttnProcessor2_0,
LoRAXFormersAttnProcessor,
XFormersAttnProcessor,
)
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from einops import rearrange
from PIL import Image
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.constants import DEFAULT_PRECISION, LATENT_SCALE_FACTOR
from invokeai.app.invocations.fields import (
FieldDescriptions,
Input,
InputField,
LatentsField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.modules.autoencoder import AutoEncoder
from invokeai.backend.model_manager.config import BaseModelType
from invokeai.backend.model_manager.load.load_base import LoadedModel
2024-07-23 15:04:33 +00:00
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice
@invocation(
"l2i",
title="Latents to Image",
tags=["latents", "image", "vae", "l2i"],
category="latents",
version="1.3.0",
)
class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an image from latents."""
latents: LatentsField = InputField(
description=FieldDescriptions.latents,
input=Input.Connection,
)
vae: VAEField = InputField(
description=FieldDescriptions.vae,
input=Input.Connection,
)
tiled: bool = InputField(default=False, description=FieldDescriptions.tiled)
# NOTE: tile_size = 0 is a special value. We use this rather than `int | None`, because the workflow UI does not
# offer a way to directly set None values.
tile_size: int = InputField(default=0, multiple_of=8, description=FieldDescriptions.vae_tile_size)
fp32: bool = InputField(default=DEFAULT_PRECISION == torch.float32, description=FieldDescriptions.fp32)
def _vae_decode_stable_diffusion(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
2024-07-23 15:04:33 +00:00
with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device)
if self.fp32:
vae.to(dtype=torch.float32)
use_torch_2_0_or_xformers = hasattr(vae.decoder, "mid_block") and isinstance(
vae.decoder.mid_block.attentions[0].processor,
(
AttnProcessor2_0,
XFormersAttnProcessor,
LoRAXFormersAttnProcessor,
LoRAAttnProcessor2_0,
),
)
# if xformers or torch_2_0 is used attention block does not need
# to be in float32 which can save lots of memory
if use_torch_2_0_or_xformers:
vae.post_quant_conv.to(latents.dtype)
vae.decoder.conv_in.to(latents.dtype)
vae.decoder.mid_block.to(latents.dtype)
else:
latents = latents.float()
else:
vae.to(dtype=torch.float16)
latents = latents.half()
if self.tiled or context.config.get().force_tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
tiling_context = nullcontext()
if self.tile_size > 0:
tiling_context = patch_vae_tiling_params(
vae,
tile_sample_min_size=self.tile_size,
tile_latent_min_size=self.tile_size // LATENT_SCALE_FACTOR,
tile_overlap_factor=0.25,
)
# clear memory as vae decode can request a lot
TorchDevice.empty_cache()
with torch.inference_mode(), tiling_context:
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
return image
def _vae_decode_flux(self, vae_info: LoadedModel, latents: torch.Tensor) -> Image.Image:
with vae_info as vae:
assert isinstance(vae, AutoEncoder)
latents = latents.to(dtype=TorchDevice.choose_torch_dtype())
img = vae.decode(latents)
img = img.clamp(-1, 1)
img = rearrange(img[0], "c h w -> h w c") # noqa: F821
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
return img_pil
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.tensors.load(self.latents.latents_name)
vae_info = context.models.load(self.vae.vae)
if vae_info.config.base == BaseModelType.Flux:
if self.fp32:
raise NotImplementedError("FLUX VAE decode does not currently support fp32=True.")
if self.tiled:
raise NotImplementedError("FLUX VAE decode does not currently support tiled=True.")
image = self._vae_decode_flux(vae_info=vae_info, latents=latents)
elif vae_info.config.base in [
BaseModelType.StableDiffusion1,
BaseModelType.StableDiffusion2,
BaseModelType.StableDiffusionXL,
]:
image = self._vae_decode_stable_diffusion(vae_info=vae_info, latents=latents)
else:
raise ValueError(f"Unsupported VAE base type: '{vae_info.config.base}'")
TorchDevice.empty_cache()
image_dto = context.images.save(image=image)
return ImageOutput.build(image_dto)