2023-06-22 19:47:12 +00:00
|
|
|
'''
|
|
|
|
Migrate the models directory and models.yaml file from an existing
|
|
|
|
InvokeAI 2.3 installation to 3.0.0.
|
|
|
|
'''
|
|
|
|
|
|
|
|
import io
|
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import shutil
|
|
|
|
import yaml
|
|
|
|
|
|
|
|
import transformers
|
|
|
|
import diffusers
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from pathlib import Path
|
2023-06-23 17:56:30 +00:00
|
|
|
from omegaconf import OmegaConf, DictConfig
|
|
|
|
from typing import Union
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
|
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
|
|
from transformers import (
|
|
|
|
CLIPTextModel,
|
|
|
|
CLIPTokenizer,
|
|
|
|
AutoFeatureExtractor,
|
|
|
|
BertTokenizerFast,
|
|
|
|
)
|
|
|
|
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
|
|
from invokeai.backend.model_management import ModelManager
|
|
|
|
from invokeai.backend.model_management.model_probe import (
|
|
|
|
ModelProbe, ModelType, BaseModelType, SchedulerPredictionType, ModelProbeInfo
|
|
|
|
)
|
|
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
diffusers.logging.set_verbosity_error()
|
|
|
|
|
|
|
|
# holder for paths that we will migrate
|
|
|
|
@dataclass
|
|
|
|
class ModelPaths:
|
|
|
|
models: Path
|
|
|
|
embeddings: Path
|
|
|
|
loras: Path
|
|
|
|
controlnets: Path
|
|
|
|
|
|
|
|
class MigrateTo3(object):
|
|
|
|
def __init__(self,
|
|
|
|
root_directory: Path,
|
|
|
|
dest_models: Path,
|
|
|
|
yaml_file: io.TextIOBase,
|
|
|
|
src_paths: ModelPaths,
|
|
|
|
):
|
|
|
|
self.root_directory = root_directory
|
|
|
|
self.dest_models = dest_models
|
|
|
|
self.dest_yaml = yaml_file
|
|
|
|
self.model_names = set()
|
|
|
|
self.src_paths = src_paths
|
|
|
|
|
|
|
|
self._initialize_yaml()
|
|
|
|
|
|
|
|
def _initialize_yaml(self):
|
|
|
|
self.dest_yaml.write(
|
|
|
|
yaml.dump(
|
|
|
|
{
|
|
|
|
'__metadata__':
|
|
|
|
{
|
|
|
|
'version':'3.0.0'}
|
|
|
|
}
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
def unique_name(self,name,info)->str:
|
|
|
|
'''
|
|
|
|
Create a unique name for a model for use within models.yaml.
|
|
|
|
'''
|
|
|
|
done = False
|
2023-07-02 01:08:59 +00:00
|
|
|
|
|
|
|
# some model names have slashes in them, which really screws things up
|
|
|
|
name = name.replace('/','_')
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
key = ModelManager.create_key(name,info.base_type,info.model_type)
|
|
|
|
unique_name = key
|
|
|
|
counter = 1
|
|
|
|
while not done:
|
|
|
|
if unique_name in self.model_names:
|
|
|
|
unique_name = f'{key}-{counter:0>2d}'
|
|
|
|
counter += 1
|
|
|
|
else:
|
|
|
|
done = True
|
|
|
|
self.model_names.add(unique_name)
|
|
|
|
name,_,_ = ModelManager.parse_key(unique_name)
|
|
|
|
return name
|
|
|
|
|
|
|
|
def create_directory_structure(self):
|
|
|
|
'''
|
|
|
|
Create the basic directory structure for the models folder.
|
|
|
|
'''
|
|
|
|
for model_base in [BaseModelType.StableDiffusion1,BaseModelType.StableDiffusion2]:
|
2023-06-24 15:45:49 +00:00
|
|
|
for model_type in [ModelType.Main, ModelType.Vae, ModelType.Lora,
|
2023-06-22 19:47:12 +00:00
|
|
|
ModelType.ControlNet,ModelType.TextualInversion]:
|
|
|
|
path = self.dest_models / model_base.value / model_type.value
|
|
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
path = self.dest_models / 'core'
|
|
|
|
path.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def copy_file(src:Path,dest:Path):
|
|
|
|
'''
|
|
|
|
copy a single file with logging
|
|
|
|
'''
|
2023-06-23 17:56:30 +00:00
|
|
|
if dest.exists():
|
|
|
|
logger.info(f'Skipping existing {str(dest)}')
|
|
|
|
return
|
2023-06-22 19:47:12 +00:00
|
|
|
logger.info(f'Copying {str(src)} to {str(dest)}')
|
|
|
|
try:
|
|
|
|
shutil.copy(src, dest)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f'COPY FAILED: {str(e)}')
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def copy_dir(src:Path,dest:Path):
|
|
|
|
'''
|
|
|
|
Recursively copy a directory with logging
|
|
|
|
'''
|
2023-06-23 17:56:30 +00:00
|
|
|
if dest.exists():
|
|
|
|
logger.info(f'Skipping existing {str(dest)}')
|
|
|
|
return
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
logger.info(f'Copying {str(src)} to {str(dest)}')
|
|
|
|
try:
|
|
|
|
shutil.copytree(src, dest)
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f'COPY FAILED: {str(e)}')
|
|
|
|
|
|
|
|
def migrate_models(self, src_dir: Path):
|
|
|
|
'''
|
|
|
|
Recursively walk through src directory, probe anything
|
|
|
|
that looks like a model, and copy the model into the
|
|
|
|
appropriate location within the destination models directory.
|
|
|
|
'''
|
|
|
|
for root, dirs, files in os.walk(src_dir):
|
|
|
|
for f in files:
|
|
|
|
# hack - don't copy raw learned_embeds.bin, let them
|
|
|
|
# be copied as part of a tree copy operation
|
|
|
|
if f == 'learned_embeds.bin':
|
|
|
|
continue
|
|
|
|
try:
|
|
|
|
model = Path(root,f)
|
|
|
|
info = ModelProbe().heuristic_probe(model)
|
|
|
|
if not info:
|
|
|
|
continue
|
2023-06-23 17:56:30 +00:00
|
|
|
dest = self._model_probe_to_path(info) / f
|
2023-06-22 19:47:12 +00:00
|
|
|
self.copy_file(model, dest)
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
raise
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(str(e))
|
|
|
|
for d in dirs:
|
|
|
|
try:
|
|
|
|
model = Path(root,d)
|
|
|
|
info = ModelProbe().heuristic_probe(model)
|
|
|
|
if not info:
|
|
|
|
continue
|
2023-06-23 17:56:30 +00:00
|
|
|
dest = self._model_probe_to_path(info) / model.name
|
2023-06-22 19:47:12 +00:00
|
|
|
self.copy_dir(model, dest)
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
raise
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(str(e))
|
|
|
|
|
|
|
|
def migrate_support_models(self):
|
|
|
|
'''
|
|
|
|
Copy the clipseg, upscaler, and restoration models to their new
|
|
|
|
locations.
|
|
|
|
'''
|
|
|
|
dest_directory = self.dest_models
|
|
|
|
if (self.root_directory / 'models/clipseg').exists():
|
|
|
|
self.copy_dir(self.root_directory / 'models/clipseg', dest_directory / 'core/misc/clipseg')
|
|
|
|
if (self.root_directory / 'models/realesrgan').exists():
|
|
|
|
self.copy_dir(self.root_directory / 'models/realesrgan', dest_directory / 'core/upscaling/realesrgan')
|
|
|
|
for d in ['codeformer','gfpgan']:
|
|
|
|
path = self.root_directory / 'models' / d
|
|
|
|
if path.exists():
|
|
|
|
self.copy_dir(path,dest_directory / f'core/face_restoration/{d}')
|
|
|
|
|
|
|
|
def migrate_tuning_models(self):
|
|
|
|
'''
|
|
|
|
Migrate the embeddings, loras and controlnets directories to their new homes.
|
|
|
|
'''
|
|
|
|
for src in [self.src_paths.embeddings, self.src_paths.loras, self.src_paths.controlnets]:
|
|
|
|
if not src:
|
|
|
|
continue
|
|
|
|
if src.is_dir():
|
|
|
|
logger.info(f'Scanning {src}')
|
|
|
|
self.migrate_models(src)
|
|
|
|
else:
|
|
|
|
logger.info(f'{src} directory not found; skipping')
|
|
|
|
continue
|
|
|
|
|
|
|
|
def migrate_conversion_models(self):
|
|
|
|
'''
|
|
|
|
Migrate all the models that are needed by the ckpt_to_diffusers conversion
|
|
|
|
script.
|
|
|
|
'''
|
|
|
|
|
|
|
|
dest_directory = self.dest_models
|
|
|
|
kwargs = dict(
|
|
|
|
cache_dir = self.root_directory / 'models/hub',
|
|
|
|
#local_files_only = True
|
|
|
|
)
|
|
|
|
try:
|
|
|
|
logger.info('Migrating core tokenizers and text encoders')
|
|
|
|
target_dir = dest_directory / 'core' / 'convert'
|
|
|
|
|
2023-06-23 17:56:30 +00:00
|
|
|
self._migrate_pretrained(BertTokenizerFast,
|
|
|
|
repo_id='bert-base-uncased',
|
|
|
|
dest = target_dir / 'bert-base-uncased',
|
|
|
|
**kwargs)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
# sd-1
|
|
|
|
repo_id = 'openai/clip-vit-large-patch14'
|
2023-06-23 17:56:30 +00:00
|
|
|
self._migrate_pretrained(CLIPTokenizer,
|
|
|
|
repo_id= repo_id,
|
|
|
|
dest= target_dir / 'clip-vit-large-patch14' / 'tokenizer',
|
|
|
|
**kwargs)
|
|
|
|
self._migrate_pretrained(CLIPTextModel,
|
|
|
|
repo_id = repo_id,
|
|
|
|
dest = target_dir / 'clip-vit-large-patch14' / 'text_encoder',
|
|
|
|
**kwargs)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
# sd-2
|
|
|
|
repo_id = "stabilityai/stable-diffusion-2"
|
2023-06-23 17:56:30 +00:00
|
|
|
self._migrate_pretrained(CLIPTokenizer,
|
|
|
|
repo_id = repo_id,
|
|
|
|
dest = target_dir / 'stable-diffusion-2-clip' / 'tokenizer',
|
|
|
|
**{'subfolder':'tokenizer',**kwargs}
|
|
|
|
)
|
|
|
|
self._migrate_pretrained(CLIPTextModel,
|
|
|
|
repo_id = repo_id,
|
|
|
|
dest = target_dir / 'stable-diffusion-2-clip' / 'text_encoder',
|
|
|
|
**{'subfolder':'text_encoder',**kwargs}
|
|
|
|
)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
# VAE
|
|
|
|
logger.info('Migrating stable diffusion VAE')
|
2023-06-23 17:56:30 +00:00
|
|
|
self._migrate_pretrained(AutoencoderKL,
|
|
|
|
repo_id = 'stabilityai/sd-vae-ft-mse',
|
|
|
|
dest = target_dir / 'sd-vae-ft-mse',
|
|
|
|
**kwargs)
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
# safety checking
|
|
|
|
logger.info('Migrating safety checker')
|
|
|
|
repo_id = "CompVis/stable-diffusion-safety-checker"
|
2023-06-23 17:56:30 +00:00
|
|
|
self._migrate_pretrained(AutoFeatureExtractor,
|
|
|
|
repo_id = repo_id,
|
|
|
|
dest = target_dir / 'stable-diffusion-safety-checker',
|
|
|
|
**kwargs)
|
|
|
|
self._migrate_pretrained(StableDiffusionSafetyChecker,
|
|
|
|
repo_id = repo_id,
|
|
|
|
dest = target_dir / 'stable-diffusion-safety-checker',
|
|
|
|
**kwargs)
|
2023-06-22 19:47:12 +00:00
|
|
|
except KeyboardInterrupt:
|
|
|
|
raise
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(str(e))
|
|
|
|
|
|
|
|
def write_yaml(self, model_name: str, path:Path, info:ModelProbeInfo, **kwargs):
|
|
|
|
'''
|
|
|
|
Write a stanza for a moved model into the new models.yaml file.
|
|
|
|
'''
|
|
|
|
name = self.unique_name(model_name, info)
|
|
|
|
stanza = {
|
|
|
|
f'{info.base_type.value}/{info.model_type.value}/{name}': {
|
|
|
|
'name': model_name,
|
|
|
|
'path': str(path),
|
|
|
|
'description': f'A {info.base_type.value} {info.model_type.value} model',
|
|
|
|
'format': info.format,
|
|
|
|
'image_size': info.image_size,
|
|
|
|
'base': info.base_type.value,
|
|
|
|
'variant': info.variant_type.value,
|
|
|
|
'prediction_type': info.prediction_type.value,
|
|
|
|
'upcast_attention': info.prediction_type == SchedulerPredictionType.VPrediction,
|
|
|
|
**kwargs,
|
|
|
|
}
|
|
|
|
}
|
|
|
|
self.dest_yaml.write(yaml.dump(stanza))
|
|
|
|
self.dest_yaml.flush()
|
2023-06-23 17:56:30 +00:00
|
|
|
|
|
|
|
def _model_probe_to_path(self, info: ModelProbeInfo)->Path:
|
|
|
|
return Path(self.dest_models, info.base_type.value, info.model_type.value)
|
|
|
|
|
|
|
|
def _migrate_pretrained(self, model_class, repo_id: str, dest: Path, **kwargs):
|
|
|
|
if dest.exists():
|
|
|
|
logger.info(f'Skipping existing {dest}')
|
|
|
|
return
|
|
|
|
model = model_class.from_pretrained(repo_id, **kwargs)
|
|
|
|
self._save_pretrained(model, dest)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
2023-06-23 17:56:30 +00:00
|
|
|
def _save_pretrained(self, model, dest: Path):
|
|
|
|
if dest.exists():
|
|
|
|
logger.info(f'Skipping existing {dest}')
|
|
|
|
return
|
|
|
|
model_name = dest.name
|
|
|
|
download_path = dest.with_name(f'{model_name}.downloading')
|
|
|
|
model.save_pretrained(download_path, safe_serialization=True)
|
|
|
|
download_path.replace(dest)
|
|
|
|
|
|
|
|
def _download_vae(self, repo_id: str, subfolder:str=None)->Path:
|
|
|
|
vae = AutoencoderKL.from_pretrained(repo_id, cache_dir=self.root_directory / 'models/hub', subfolder=subfolder)
|
|
|
|
info = ModelProbe().heuristic_probe(vae)
|
|
|
|
_, model_name = repo_id.split('/')
|
|
|
|
dest = self._model_probe_to_path(info) / self.unique_name(model_name, info)
|
|
|
|
vae.save_pretrained(dest, safe_serialization=True)
|
|
|
|
return dest
|
|
|
|
|
|
|
|
def _vae_path(self, vae: Union[str,dict])->Path:
|
|
|
|
'''
|
|
|
|
Convert 2.3 VAE stanza to a straight path.
|
|
|
|
'''
|
|
|
|
vae_path = None
|
|
|
|
|
|
|
|
# First get a path
|
|
|
|
if isinstance(vae,str):
|
|
|
|
vae_path = vae
|
|
|
|
|
|
|
|
elif isinstance(vae,DictConfig):
|
|
|
|
if p := vae.get('path'):
|
|
|
|
vae_path = p
|
|
|
|
elif repo_id := vae.get('repo_id'):
|
|
|
|
if repo_id=='stabilityai/sd-vae-ft-mse': # this guy is already downloaded
|
2023-06-29 04:45:55 +00:00
|
|
|
vae_path = 'models/core/convert/sd-vae-ft-mse'
|
2023-06-23 17:56:30 +00:00
|
|
|
else:
|
|
|
|
vae_path = self._download_vae(repo_id, vae.get('subfolder'))
|
|
|
|
|
|
|
|
assert vae_path is not None, "Couldn't find VAE for this model"
|
|
|
|
|
|
|
|
# if the VAE is in the old models directory, then we must move it into the new
|
|
|
|
# one. VAEs outside of this directory can stay where they are.
|
|
|
|
vae_path = Path(vae_path)
|
|
|
|
if vae_path.is_relative_to(self.src_paths.models):
|
|
|
|
info = ModelProbe().heuristic_probe(vae_path)
|
|
|
|
dest = self._model_probe_to_path(info) / vae_path.name
|
|
|
|
if not dest.exists():
|
|
|
|
self.copy_dir(vae_path,dest)
|
|
|
|
vae_path = dest
|
|
|
|
|
|
|
|
if vae_path.is_relative_to(self.dest_models):
|
|
|
|
rel_path = vae_path.relative_to(self.dest_models)
|
|
|
|
return Path('models',rel_path)
|
|
|
|
else:
|
|
|
|
return vae_path
|
|
|
|
|
|
|
|
def migrate_repo_id(self, repo_id: str, model_name :str=None, **extra_config):
|
2023-06-22 19:47:12 +00:00
|
|
|
'''
|
|
|
|
Migrate a locally-cached diffusers pipeline identified with a repo_id
|
|
|
|
'''
|
|
|
|
dest_dir = self.dest_models
|
|
|
|
|
|
|
|
cache = self.root_directory / 'models/hub'
|
|
|
|
kwargs = dict(
|
|
|
|
cache_dir = cache,
|
|
|
|
safety_checker = None,
|
|
|
|
# local_files_only = True,
|
|
|
|
)
|
|
|
|
|
|
|
|
owner,repo_name = repo_id.split('/')
|
|
|
|
model_name = model_name or repo_name
|
|
|
|
model = cache / '--'.join(['models',owner,repo_name])
|
|
|
|
|
|
|
|
if len(list(model.glob('snapshots/**/model_index.json')))==0:
|
|
|
|
return
|
|
|
|
revisions = [x.name for x in model.glob('refs/*')]
|
|
|
|
|
|
|
|
# if an fp16 is available we use that
|
|
|
|
revision = 'fp16' if len(revisions) > 1 and 'fp16' in revisions else revisions[0]
|
|
|
|
pipeline = StableDiffusionPipeline.from_pretrained(
|
|
|
|
repo_id,
|
|
|
|
revision=revision,
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
info = ModelProbe().heuristic_probe(pipeline)
|
|
|
|
if not info:
|
|
|
|
return
|
|
|
|
|
2023-06-23 17:56:30 +00:00
|
|
|
dest = self._model_probe_to_path(info) / repo_name
|
|
|
|
self._save_pretrained(pipeline, dest)
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
rel_path = Path('models',dest.relative_to(dest_dir))
|
2023-06-23 17:56:30 +00:00
|
|
|
self.write_yaml(model_name, path=rel_path, info=info, **extra_config)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
def migrate_path(self, location: Path, model_name: str=None, **extra_config):
|
|
|
|
'''
|
|
|
|
Migrate a model referred to using 'weights' or 'path'
|
|
|
|
'''
|
|
|
|
|
|
|
|
# handle relative paths
|
|
|
|
dest_dir = self.dest_models
|
2023-06-23 01:10:31 +00:00
|
|
|
location = self.root_directory / location
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
info = ModelProbe().heuristic_probe(location)
|
|
|
|
if not info:
|
|
|
|
return
|
|
|
|
|
|
|
|
# uh oh, weights is in the old models directory - move it into the new one
|
|
|
|
if Path(location).is_relative_to(self.src_paths.models):
|
|
|
|
dest = Path(dest_dir, info.base_type.value, info.model_type.value, location.name)
|
|
|
|
self.copy_dir(location,dest)
|
|
|
|
location = Path('models', info.base_type.value, info.model_type.value, location.name)
|
|
|
|
model_name = model_name or location.stem
|
|
|
|
model_name = self.unique_name(model_name, info)
|
|
|
|
self.write_yaml(model_name, path=location, info=info, **extra_config)
|
|
|
|
|
|
|
|
def migrate_defined_models(self):
|
|
|
|
'''
|
|
|
|
Migrate models defined in models.yaml
|
|
|
|
'''
|
|
|
|
# find any models referred to in old models.yaml
|
|
|
|
conf = OmegaConf.load(self.root_directory / 'configs/models.yaml')
|
|
|
|
|
|
|
|
for model_name, stanza in conf.items():
|
|
|
|
|
|
|
|
try:
|
2023-06-23 17:56:30 +00:00
|
|
|
passthru_args = {}
|
|
|
|
|
|
|
|
if vae := stanza.get('vae'):
|
|
|
|
try:
|
|
|
|
passthru_args['vae'] = str(self._vae_path(vae))
|
|
|
|
except Exception as e:
|
|
|
|
logger.warning(f'Could not find a VAE matching "{vae}" for model "{model_name}"')
|
|
|
|
logger.warning(str(e))
|
|
|
|
|
|
|
|
if config := stanza.get('config'):
|
|
|
|
passthru_args['config'] = config
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
if repo_id := stanza.get('repo_id'):
|
|
|
|
logger.info(f'Migrating diffusers model {model_name}')
|
2023-06-23 17:56:30 +00:00
|
|
|
self.migrate_repo_id(repo_id, model_name, **passthru_args)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
elif location := stanza.get('weights'):
|
|
|
|
logger.info(f'Migrating checkpoint model {model_name}')
|
2023-06-23 17:56:30 +00:00
|
|
|
self.migrate_path(Path(location), model_name, **passthru_args)
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
elif location := stanza.get('path'):
|
|
|
|
logger.info(f'Migrating diffusers model {model_name}')
|
2023-06-23 17:56:30 +00:00
|
|
|
self.migrate_path(Path(location), model_name, **passthru_args)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
raise
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(str(e))
|
|
|
|
|
|
|
|
def migrate(self):
|
|
|
|
self.create_directory_structure()
|
|
|
|
# the configure script is doing this
|
|
|
|
self.migrate_support_models()
|
|
|
|
self.migrate_conversion_models()
|
|
|
|
self.migrate_tuning_models()
|
|
|
|
self.migrate_defined_models()
|
|
|
|
|
|
|
|
def _parse_legacy_initfile(root: Path, initfile: Path)->ModelPaths:
|
|
|
|
'''
|
|
|
|
Returns tuple of (embedding_path, lora_path, controlnet_path)
|
|
|
|
'''
|
|
|
|
parser = argparse.ArgumentParser(fromfile_prefix_chars='@')
|
|
|
|
parser.add_argument(
|
|
|
|
'--embedding_directory',
|
|
|
|
'--embedding_path',
|
|
|
|
type=Path,
|
|
|
|
dest='embedding_path',
|
|
|
|
default=Path('embeddings'),
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--lora_directory',
|
|
|
|
dest='lora_path',
|
|
|
|
type=Path,
|
|
|
|
default=Path('loras'),
|
|
|
|
)
|
|
|
|
opt,_ = parser.parse_known_args([f'@{str(initfile)}'])
|
|
|
|
return ModelPaths(
|
|
|
|
models = root / 'models',
|
|
|
|
embeddings = root / str(opt.embedding_path).strip('"'),
|
|
|
|
loras = root / str(opt.lora_path).strip('"'),
|
2023-06-24 16:37:26 +00:00
|
|
|
controlnets = root / 'controlnets',
|
2023-06-22 19:47:12 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
def _parse_legacy_yamlfile(root: Path, initfile: Path)->ModelPaths:
|
|
|
|
'''
|
|
|
|
Returns tuple of (embedding_path, lora_path, controlnet_path)
|
|
|
|
'''
|
|
|
|
# Don't use the config object because it is unforgiving of version updates
|
|
|
|
# Just use omegaconf directly
|
|
|
|
opt = OmegaConf.load(initfile)
|
|
|
|
paths = opt.InvokeAI.Paths
|
|
|
|
models = paths.get('models_dir','models')
|
|
|
|
embeddings = paths.get('embedding_dir','embeddings')
|
|
|
|
loras = paths.get('lora_dir','loras')
|
|
|
|
controlnets = paths.get('controlnet_dir','controlnets')
|
|
|
|
return ModelPaths(
|
|
|
|
models = root / models,
|
|
|
|
embeddings = root / embeddings,
|
|
|
|
loras = root /loras,
|
|
|
|
controlnets = root / controlnets,
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_legacy_embeddings(root: Path) -> ModelPaths:
|
|
|
|
path = root / 'invokeai.init'
|
|
|
|
if path.exists():
|
|
|
|
return _parse_legacy_initfile(root, path)
|
|
|
|
path = root / 'invokeai.yaml'
|
|
|
|
if path.exists():
|
|
|
|
return _parse_legacy_yamlfile(root, path)
|
2023-06-22 20:44:55 +00:00
|
|
|
|
|
|
|
def do_migrate(src_directory: Path, dest_directory: Path):
|
|
|
|
|
|
|
|
dest_models = dest_directory / 'models-3.0'
|
|
|
|
dest_yaml = dest_directory / 'configs/models.yaml-3.0'
|
|
|
|
|
|
|
|
paths = get_legacy_embeddings(src_directory)
|
|
|
|
|
|
|
|
with open(dest_yaml,'w') as yaml_file:
|
|
|
|
migrator = MigrateTo3(src_directory,
|
|
|
|
dest_models,
|
|
|
|
yaml_file,
|
|
|
|
src_paths = paths,
|
|
|
|
)
|
|
|
|
migrator.migrate()
|
|
|
|
|
2023-06-23 17:56:30 +00:00
|
|
|
shutil.rmtree(dest_directory / 'models.orig', ignore_errors=True)
|
2023-06-22 20:44:55 +00:00
|
|
|
(dest_directory / 'models').replace(dest_directory / 'models.orig')
|
|
|
|
dest_models.replace(dest_directory / 'models')
|
|
|
|
|
|
|
|
(dest_directory /'configs/models.yaml').replace(dest_directory / 'configs/models.yaml.orig')
|
|
|
|
dest_yaml.replace(dest_directory / 'configs/models.yaml')
|
|
|
|
print(f"""Migration successful.
|
|
|
|
Original models directory moved to {dest_directory}/models.orig
|
|
|
|
Original models.yaml file moved to {dest_directory}/configs/models.yaml.orig
|
|
|
|
""")
|
|
|
|
|
2023-06-22 19:47:12 +00:00
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser(prog="invokeai-migrate3",
|
|
|
|
description="""
|
|
|
|
This will copy and convert the models directory and the configs/models.yaml from the InvokeAI 2.3 format
|
|
|
|
'--from-directory' root to the InvokeAI 3.0 '--to-directory' root. These may be abbreviated '--from' and '--to'.a
|
|
|
|
|
|
|
|
The old models directory and config file will be renamed 'models.orig' and 'models.yaml.orig' respectively.
|
|
|
|
It is safe to provide the same directory for both arguments, but it is better to use the invokeai_configure
|
|
|
|
script, which will perform a full upgrade in place."""
|
|
|
|
)
|
|
|
|
parser.add_argument('--from-directory',
|
|
|
|
dest='root_directory',
|
|
|
|
type=Path,
|
|
|
|
required=True,
|
|
|
|
help='Source InvokeAI 2.3 root directory (containing "invokeai.init" or "invokeai.yaml")'
|
|
|
|
)
|
|
|
|
parser.add_argument('--to-directory',
|
|
|
|
dest='dest_directory',
|
|
|
|
type=Path,
|
|
|
|
required=True,
|
|
|
|
help='Destination InvokeAI 3.0 directory (containing "invokeai.yaml")'
|
|
|
|
)
|
2023-06-23 17:56:30 +00:00
|
|
|
# TO DO: Implement full directory scanning
|
2023-06-22 19:47:12 +00:00
|
|
|
# parser.add_argument('--all-models',
|
|
|
|
# action="store_true",
|
|
|
|
# help='Migrate all models found in `models` directory, not just those mentioned in models.yaml',
|
|
|
|
# )
|
|
|
|
args = parser.parse_args()
|
|
|
|
root_directory = args.root_directory
|
|
|
|
assert root_directory.is_dir(), f"{root_directory} is not a valid directory"
|
|
|
|
assert (root_directory / 'models').is_dir(), f"{root_directory} does not contain a 'models' subdirectory"
|
|
|
|
assert (root_directory / 'invokeai.init').exists() or (root_directory / 'invokeai.yaml').exists(), f"{root_directory} does not contain an InvokeAI init file."
|
|
|
|
|
|
|
|
dest_directory = args.dest_directory
|
|
|
|
assert dest_directory.is_dir(), f"{dest_directory} is not a valid directory"
|
|
|
|
assert (dest_directory / 'models').is_dir(), f"{dest_directory} does not contain a 'models' subdirectory"
|
|
|
|
assert (dest_directory / 'invokeai.yaml').exists(), f"{dest_directory} does not contain an InvokeAI init file."
|
|
|
|
|
2023-06-22 20:44:55 +00:00
|
|
|
do_migrate(root_directory,dest_directory)
|
2023-06-22 19:47:12 +00:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|
|
|
|
|
2023-06-23 17:56:30 +00:00
|
|
|
|
|
|
|
|