InvokeAI/configs/latent-diffusion/cin-ldm-vq-f8.yaml

98 lines
2.3 KiB
YAML
Raw Normal View History

model:
base_learning_rate: 1.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
cond_stage_key: class_label
image_size: 32
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 256
attention_resolutions:
#note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 32 for f8
- 4
- 2
- 1
num_res_blocks: 2
channel_mult:
- 1
- 2
- 4
num_head_channels: 32
use_spatial_transformer: true
transformer_depth: 1
context_dim: 512
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 4
n_embed: 16384
ckpt_path: configs/first_stage_models/vq-f8/model.yaml
ddconfig:
double_z: false
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 2
- 4
num_res_blocks: 2
attn_resolutions:
- 32
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.ClassEmbedder
params:
embed_dim: 512
key: class_label
data:
target: main.DataModuleFromConfig
params:
batch_size: 64
num_workers: 12
wrap: false
train:
target: ldm.data.imagenet.ImageNetTrain
params:
config:
size: 256
validation:
target: ldm.data.imagenet.ImageNetValidation
params:
config:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True