InvokeAI/ldm/dream/generator/embiggen.py

440 lines
22 KiB
Python
Raw Normal View History

'''
ldm.dream.generator.embiggen descends from ldm.dream.generator
and generates with ldm.dream.generator.img2img
'''
import torch
import numpy as np
from PIL import Image
from ldm.dream.generator.base import Generator
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.dream.generator.img2img import Img2Img
class Embiggen(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None
@torch.no_grad()
def get_make_image(
self,
prompt,
sampler,
steps,
cfg_scale,
ddim_eta,
conditioning,
init_img,
strength,
width,
height,
embiggen,
embiggen_tiles,
step_callback=None,
**kwargs
):
"""
Returns a function returning an image derived from the prompt and multi-stage twice-baked potato layering over the img2img on the initial image
Return value depends on the seed at the time you call it
"""
# Construct embiggen arg array, and sanity check arguments
if embiggen == None: # embiggen can also be called with just embiggen_tiles
embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0:
embiggen[0] = 1.0
print(
'>> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !')
if len(embiggen) < 2:
embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75
print('>> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !')
if len(embiggen) < 3:
embiggen.append(0.25)
elif embiggen[2] < 0:
embiggen[2] = 0.25
print('>> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !')
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
# and then sort them, because... people.
if embiggen_tiles:
embiggen_tiles = list(map(lambda n: n-1, embiggen_tiles))
embiggen_tiles.sort()
if strength >= 0.5:
print(f'* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45.')
# Prep img2img generator, since we wrap over it
2022-09-21 03:55:57 +00:00
gen_img2img = Img2Img(self.model,self.precision)
# Open original init image (not a tensor) to manipulate
initsuperimage = Image.open(init_img)
with Image.open(init_img) as img:
initsuperimage = img.convert('RGB')
# Size of the target super init image in pixels
initsuperwidth, initsuperheight = initsuperimage.size
# Increase by scaling factor if not already resized, using ESRGAN as able
if embiggen[0] != 1.0:
initsuperwidth = round(initsuperwidth*embiggen[0])
initsuperheight = round(initsuperheight*embiggen[0])
if embiggen[1] > 0: # No point in ESRGAN upscaling if strength is set zero
2022-09-19 17:59:43 +00:00
from ldm.dream.restoration.realesrgan import ESRGAN
esrgan = ESRGAN()
print(
f'>> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}')
if embiggen[0] > 2:
initsuperimage = esrgan.process(
initsuperimage,
embiggen[1], # upscale strength
self.seed,
4, # upscale scale
)
else:
initsuperimage = esrgan.process(
initsuperimage,
embiggen[1], # upscale strength
self.seed,
2, # upscale scale
)
# We could keep recursively re-running ESRGAN for a requested embiggen[0] larger than 4x
# but from personal experiance it doesn't greatly improve anything after 4x
# Resize to target scaling factor resolution
initsuperimage = initsuperimage.resize(
(initsuperwidth, initsuperheight), Image.Resampling.LANCZOS)
# Use width and height as tile widths and height
# Determine buffer size in pixels
if embiggen[2] < 1:
if embiggen[2] < 0:
embiggen[2] = 0
overlap_size_x = round(embiggen[2] * width)
overlap_size_y = round(embiggen[2] * height)
else:
overlap_size_x = round(embiggen[2])
overlap_size_y = round(embiggen[2])
# With overall image width and height known, determine how many tiles we need
def ceildiv(a, b):
return -1 * (-a // b)
# X and Y needs to be determined independantly (we may have savings on one based on the buffer pixel count)
# (initsuperwidth - width) is the area remaining to the right that we need to layers tiles to fill
# (width - overlap_size_x) is how much new we can fill with a single tile
emb_tiles_x = 1
emb_tiles_y = 1
if (initsuperwidth - width) > 0:
emb_tiles_x = ceildiv(initsuperwidth - width,
width - overlap_size_x) + 1
if (initsuperheight - height) > 0:
emb_tiles_y = ceildiv(initsuperheight - height,
height - overlap_size_y) + 1
# Sanity
assert emb_tiles_x > 1 or emb_tiles_y > 1, f'ERROR: Based on the requested dimensions of {initsuperwidth}x{initsuperheight} and tiles of {width}x{height} you don\'t need to Embiggen! Check your arguments.'
# Prep alpha layers --------------
# https://stackoverflow.com/questions/69321734/how-to-create-different-transparency-like-gradient-with-python-pil
# agradientL is Left-side transparent
agradientL = Image.linear_gradient('L').rotate(
90).resize((overlap_size_x, height))
# agradientT is Top-side transparent
agradientT = Image.linear_gradient('L').resize((width, overlap_size_y))
# radial corner is the left-top corner, made full circle then cut to just the left-top quadrant
agradientC = Image.new('L', (256, 256))
for y in range(256):
for x in range(256):
# Find distance to lower right corner (numpy takes arrays)
distanceToLR = np.sqrt([(255 - x) ** 2 + (255 - y) ** 2])[0]
# Clamp values to max 255
if distanceToLR > 255:
distanceToLR = 255
# Place the pixel as invert of distance
agradientC.putpixel((x, y), int(255 - distanceToLR))
# Create alpha layers default fully white
alphaLayerL = Image.new("L", (width, height), 255)
alphaLayerT = Image.new("L", (width, height), 255)
alphaLayerLTC = Image.new("L", (width, height), 255)
# Paste gradients into alpha layers
alphaLayerL.paste(agradientL, (0, 0))
alphaLayerT.paste(agradientT, (0, 0))
alphaLayerLTC.paste(agradientL, (0, 0))
alphaLayerLTC.paste(agradientT, (0, 0))
alphaLayerLTC.paste(agradientC.resize(
(overlap_size_x, overlap_size_y)), (0, 0))
if embiggen_tiles:
# Individual unconnected sides
alphaLayerR = Image.new("L", (width, height), 255)
alphaLayerR.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerB = Image.new("L", (width, height), 255)
alphaLayerB.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerTB = Image.new("L", (width, height), 255)
alphaLayerTB.paste(agradientT, (0, 0))
alphaLayerTB.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerLR = Image.new("L", (width, height), 255)
alphaLayerLR.paste(agradientL, (0, 0))
alphaLayerLR.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
# Sides and corner Layers
alphaLayerRBC = Image.new("L", (width, height), 255)
alphaLayerRBC.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerRBC.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerRBC.paste(agradientC.rotate(180).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
alphaLayerLBC = Image.new("L", (width, height), 255)
alphaLayerLBC.paste(agradientL, (0, 0))
alphaLayerLBC.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerLBC.paste(agradientC.rotate(90).resize(
(overlap_size_x, overlap_size_y)), (0, height - overlap_size_y))
alphaLayerRTC = Image.new("L", (width, height), 255)
alphaLayerRTC.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerRTC.paste(agradientT, (0, 0))
alphaLayerRTC.paste(agradientC.rotate(270).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
# All but X layers
alphaLayerABT = Image.new("L", (width, height), 255)
alphaLayerABT.paste(alphaLayerLBC, (0, 0))
alphaLayerABT.paste(agradientL.rotate(
180), (width - overlap_size_x, 0))
alphaLayerABT.paste(agradientC.rotate(180).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
alphaLayerABL = Image.new("L", (width, height), 255)
alphaLayerABL.paste(alphaLayerRTC, (0, 0))
alphaLayerABL.paste(agradientT.rotate(
180), (0, height - overlap_size_y))
alphaLayerABL.paste(agradientC.rotate(180).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, height - overlap_size_y))
alphaLayerABR = Image.new("L", (width, height), 255)
alphaLayerABR.paste(alphaLayerLBC, (0, 0))
alphaLayerABR.paste(agradientT, (0, 0))
alphaLayerABR.paste(agradientC.resize(
(overlap_size_x, overlap_size_y)), (0, 0))
alphaLayerABB = Image.new("L", (width, height), 255)
alphaLayerABB.paste(alphaLayerRTC, (0, 0))
alphaLayerABB.paste(agradientL, (0, 0))
alphaLayerABB.paste(agradientC.resize(
(overlap_size_x, overlap_size_y)), (0, 0))
# All-around layer
alphaLayerAA = Image.new("L", (width, height), 255)
alphaLayerAA.paste(alphaLayerABT, (0, 0))
alphaLayerAA.paste(agradientT, (0, 0))
alphaLayerAA.paste(agradientC.resize(
(overlap_size_x, overlap_size_y)), (0, 0))
alphaLayerAA.paste(agradientC.rotate(270).resize(
(overlap_size_x, overlap_size_y)), (width - overlap_size_x, 0))
# Clean up temporary gradients
del agradientL
del agradientT
del agradientC
def make_image(x_T):
# Make main tiles -------------------------------------------------
if embiggen_tiles:
print(f'>> Making {len(embiggen_tiles)} Embiggen tiles...')
else:
print(
f'>> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})...')
emb_tile_store = []
for tile in range(emb_tiles_x * emb_tiles_y):
# Determine if this is a re-run and replace
if embiggen_tiles and not tile in embiggen_tiles:
continue
# Get row and column entries
emb_row_i = tile // emb_tiles_x
emb_column_i = tile % emb_tiles_x
# Determine bounds to cut up the init image
# Determine upper-left point
if emb_column_i + 1 == emb_tiles_x:
left = initsuperwidth - width
else:
left = round(emb_column_i * (width - overlap_size_x))
if emb_row_i + 1 == emb_tiles_y:
top = initsuperheight - height
else:
top = round(emb_row_i * (height - overlap_size_y))
right = left + width
bottom = top + height
# Cropped image of above dimension (does not modify the original)
newinitimage = initsuperimage.crop((left, top, right, bottom))
# DEBUG:
# newinitimagepath = init_img[0:-4] + f'_emb_Ti{tile}.png'
# newinitimage.save(newinitimagepath)
if embiggen_tiles:
print(
f'Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)')
else:
print(
f'Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles')
# create a torch tensor from an Image
newinitimage = np.array(
newinitimage).astype(np.float32) / 255.0
newinitimage = newinitimage[None].transpose(0, 3, 1, 2)
newinitimage = torch.from_numpy(newinitimage)
newinitimage = 2.0 * newinitimage - 1.0
newinitimage = newinitimage.to(self.model.device)
tile_results = gen_img2img.generate(
prompt,
iterations=1,
seed=self.seed,
sampler=sampler,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
ddim_eta=ddim_eta,
image_callback=None, # called only after the final image is generated
step_callback=step_callback, # called after each intermediate image is generated
width=width,
height=height,
init_img=init_img, # img2img doesn't need this, but it might in the future
init_image=newinitimage, # notice that init_image is different from init_img
mask_image=None,
strength=strength,
)
emb_tile_store.append(tile_results[0][0])
# DEBUG (but, also has other uses), worth saving if you want tiles without a transparency overlap to manually composite
# emb_tile_store[-1].save(init_img[0:-4] + f'_emb_To{tile}.png')
del newinitimage
# Sanity check we have them all
if len(emb_tile_store) == (emb_tiles_x * emb_tiles_y) or (embiggen_tiles != [] and len(emb_tile_store) == len(embiggen_tiles)):
outputsuperimage = Image.new(
"RGBA", (initsuperwidth, initsuperheight))
if embiggen_tiles:
outputsuperimage.alpha_composite(
initsuperimage.convert('RGBA'), (0, 0))
for tile in range(emb_tiles_x * emb_tiles_y):
if embiggen_tiles:
if tile in embiggen_tiles:
intileimage = emb_tile_store.pop(0)
else:
continue
else:
intileimage = emb_tile_store[tile]
intileimage = intileimage.convert('RGBA')
# Get row and column entries
emb_row_i = tile // emb_tiles_x
emb_column_i = tile % emb_tiles_x
if emb_row_i == 0 and emb_column_i == 0 and not embiggen_tiles:
left = 0
top = 0
else:
# Determine upper-left point
if emb_column_i + 1 == emb_tiles_x:
left = initsuperwidth - width
else:
left = round(emb_column_i *
(width - overlap_size_x))
if emb_row_i + 1 == emb_tiles_y:
top = initsuperheight - height
else:
top = round(emb_row_i * (height - overlap_size_y))
# Handle gradients for various conditions
# Handle emb_rerun case
if embiggen_tiles:
# top of image
if emb_row_i == 0:
if emb_column_i == 0:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) not in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerB)
# Otherwise do nothing on this tile
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerR)
else:
intileimage.putalpha(alphaLayerRBC)
elif emb_column_i == emb_tiles_x - 1:
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
else:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerL)
else:
intileimage.putalpha(alphaLayerLBC)
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerLR)
else:
intileimage.putalpha(alphaLayerABT)
# bottom of image
elif emb_row_i == emb_tiles_y - 1:
if emb_column_i == 0:
if (tile+1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerT)
else:
intileimage.putalpha(alphaLayerRTC)
elif emb_column_i == emb_tiles_x - 1:
# No tiles to look ahead to
intileimage.putalpha(alphaLayerLTC)
else:
if (tile+1) in embiggen_tiles: # Look-ahead right
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerABB)
# vertical middle of image
else:
if emb_column_i == 0:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerT)
else:
intileimage.putalpha(alphaLayerTB)
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerRTC)
else:
intileimage.putalpha(alphaLayerABL)
elif emb_column_i == emb_tiles_x - 1:
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerABR)
else:
if (tile+1) in embiggen_tiles: # Look-ahead right
if (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down
intileimage.putalpha(alphaLayerLTC)
else:
intileimage.putalpha(alphaLayerABR)
elif (tile+emb_tiles_x) in embiggen_tiles: # Look-ahead down only
intileimage.putalpha(alphaLayerABB)
else:
intileimage.putalpha(alphaLayerAA)
# Handle normal tiling case (much simpler - since we tile left to right, top to bottom)
else:
if emb_row_i == 0 and emb_column_i >= 1:
intileimage.putalpha(alphaLayerL)
elif emb_row_i >= 1 and emb_column_i == 0:
intileimage.putalpha(alphaLayerT)
else:
intileimage.putalpha(alphaLayerLTC)
# Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top))
else:
print(f'Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation.')
# after internal loops and patching up return Embiggen image
return outputsuperimage
# end of function declaration
return make_image