2024-02-01 04:37:59 +00:00
|
|
|
# Copyright (c) 2024, Lincoln D. Stein and the InvokeAI Development Team
|
|
|
|
"""Default implementation of model loading in InvokeAI."""
|
|
|
|
|
|
|
|
import sys
|
|
|
|
from logging import Logger
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Any, Dict, Optional, Tuple
|
|
|
|
|
|
|
|
from diffusers import ModelMixin
|
|
|
|
from diffusers.configuration_utils import ConfigMixin
|
|
|
|
|
|
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
2024-02-05 04:18:00 +00:00
|
|
|
from invokeai.backend.model_manager import (
|
|
|
|
AnyModel,
|
|
|
|
AnyModelConfig,
|
|
|
|
InvalidModelConfigException,
|
|
|
|
ModelRepoVariant,
|
|
|
|
SubModelType,
|
|
|
|
)
|
2024-02-04 03:55:09 +00:00
|
|
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
2024-02-04 22:23:10 +00:00
|
|
|
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
2024-02-09 21:42:33 +00:00
|
|
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase, ModelLockerBase
|
2024-02-05 04:18:00 +00:00
|
|
|
from invokeai.backend.model_manager.load.model_util import calc_model_size_by_data, calc_model_size_by_fs
|
2024-02-04 22:23:10 +00:00
|
|
|
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
2024-02-01 04:37:59 +00:00
|
|
|
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
|
|
|
|
|
|
|
|
|
|
|
|
class ConfigLoader(ConfigMixin):
|
|
|
|
"""Subclass of ConfigMixin for loading diffusers configuration files."""
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def load_config(cls, *args: Any, **kwargs: Any) -> Dict[str, Any]:
|
|
|
|
"""Load a diffusrs ConfigMixin configuration."""
|
|
|
|
cls.config_name = kwargs.pop("config_name")
|
|
|
|
# Diffusers doesn't provide typing info
|
|
|
|
return super().load_config(*args, **kwargs) # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
# TO DO: The loader is not thread safe!
|
|
|
|
class ModelLoader(ModelLoaderBase):
|
|
|
|
"""Default implementation of ModelLoaderBase."""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
app_config: InvokeAIAppConfig,
|
|
|
|
logger: Logger,
|
2024-02-04 22:23:10 +00:00
|
|
|
ram_cache: ModelCacheBase[AnyModel],
|
2024-02-01 04:37:59 +00:00
|
|
|
convert_cache: ModelConvertCacheBase,
|
|
|
|
):
|
|
|
|
"""Initialize the loader."""
|
|
|
|
self._app_config = app_config
|
|
|
|
self._logger = logger
|
|
|
|
self._ram_cache = ram_cache
|
|
|
|
self._convert_cache = convert_cache
|
2024-02-06 02:55:11 +00:00
|
|
|
self._torch_dtype = torch_dtype(choose_torch_device(), app_config)
|
2024-02-01 04:37:59 +00:00
|
|
|
|
|
|
|
def load_model(self, model_config: AnyModelConfig, submodel_type: Optional[SubModelType] = None) -> LoadedModel:
|
|
|
|
"""
|
|
|
|
Return a model given its configuration.
|
|
|
|
|
|
|
|
Given a model's configuration as returned by the ModelRecordConfigStore service,
|
|
|
|
return a LoadedModel object that can be used for inference.
|
|
|
|
|
|
|
|
:param model config: Configuration record for this model
|
|
|
|
:param submodel_type: an ModelType enum indicating the portion of
|
|
|
|
the model to retrieve (e.g. ModelType.Vae)
|
|
|
|
"""
|
|
|
|
if model_config.type == "main" and not submodel_type:
|
|
|
|
raise InvalidModelConfigException("submodel_type is required when loading a main model")
|
|
|
|
|
2024-02-04 22:23:10 +00:00
|
|
|
model_path, model_config, submodel_type = self._get_model_path(model_config, submodel_type)
|
2024-02-01 04:37:59 +00:00
|
|
|
|
|
|
|
if not model_path.exists():
|
2024-02-06 03:56:32 +00:00
|
|
|
raise InvalidModelConfigException(f"Files for model '{model_config.name}' not found at {model_path}")
|
2024-02-01 04:37:59 +00:00
|
|
|
|
|
|
|
model_path = self._convert_if_needed(model_config, model_path, submodel_type)
|
|
|
|
locker = self._load_if_needed(model_config, model_path, submodel_type)
|
2024-02-16 03:41:29 +00:00
|
|
|
return LoadedModel(config=model_config, _locker=locker)
|
2024-02-01 04:37:59 +00:00
|
|
|
|
|
|
|
def _get_model_path(
|
|
|
|
self, config: AnyModelConfig, submodel_type: Optional[SubModelType] = None
|
2024-02-04 22:23:10 +00:00
|
|
|
) -> Tuple[Path, AnyModelConfig, Optional[SubModelType]]:
|
2024-02-01 04:37:59 +00:00
|
|
|
model_base = self._app_config.models_path
|
2024-02-04 22:23:10 +00:00
|
|
|
result = (model_base / config.path).resolve(), config, submodel_type
|
|
|
|
return result
|
2024-02-01 04:37:59 +00:00
|
|
|
|
|
|
|
def _convert_if_needed(
|
|
|
|
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
|
|
|
|
) -> Path:
|
|
|
|
cache_path: Path = self._convert_cache.cache_path(config.key)
|
|
|
|
|
2024-02-04 03:55:09 +00:00
|
|
|
if not self._needs_conversion(config, model_path, cache_path):
|
|
|
|
return cache_path if cache_path.exists() else model_path
|
|
|
|
|
2024-02-04 22:23:10 +00:00
|
|
|
self._convert_cache.make_room(self.get_size_fs(config, model_path, submodel_type))
|
2024-02-04 03:55:09 +00:00
|
|
|
return self._convert_model(config, model_path, cache_path)
|
2024-02-01 04:37:59 +00:00
|
|
|
|
2024-02-04 03:55:09 +00:00
|
|
|
def _needs_conversion(self, config: AnyModelConfig, model_path: Path, cache_path: Path) -> bool:
|
2024-02-01 04:37:59 +00:00
|
|
|
return False
|
|
|
|
|
|
|
|
def _load_if_needed(
|
|
|
|
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
|
|
|
|
) -> ModelLockerBase:
|
|
|
|
# TO DO: This is not thread safe!
|
2024-02-06 02:55:11 +00:00
|
|
|
try:
|
2024-02-01 04:37:59 +00:00
|
|
|
return self._ram_cache.get(config.key, submodel_type)
|
2024-02-06 02:55:11 +00:00
|
|
|
except IndexError:
|
|
|
|
pass
|
2024-02-01 04:37:59 +00:00
|
|
|
|
|
|
|
model_variant = getattr(config, "repo_variant", None)
|
|
|
|
self._ram_cache.make_room(self.get_size_fs(config, model_path, submodel_type))
|
|
|
|
|
|
|
|
# This is where the model is actually loaded!
|
|
|
|
with skip_torch_weight_init():
|
|
|
|
loaded_model = self._load_model(model_path, model_variant=model_variant, submodel_type=submodel_type)
|
|
|
|
|
|
|
|
self._ram_cache.put(
|
|
|
|
config.key,
|
|
|
|
submodel_type=submodel_type,
|
|
|
|
model=loaded_model,
|
2024-02-04 22:23:10 +00:00
|
|
|
size=calc_model_size_by_data(loaded_model),
|
2024-02-01 04:37:59 +00:00
|
|
|
)
|
|
|
|
|
2024-02-06 02:55:11 +00:00
|
|
|
return self._ram_cache.get(
|
|
|
|
key=config.key,
|
|
|
|
submodel_type=submodel_type,
|
|
|
|
stats_name=":".join([config.base, config.type, config.name, (submodel_type or "")]),
|
|
|
|
)
|
2024-02-01 04:37:59 +00:00
|
|
|
|
|
|
|
def get_size_fs(
|
|
|
|
self, config: AnyModelConfig, model_path: Path, submodel_type: Optional[SubModelType] = None
|
|
|
|
) -> int:
|
|
|
|
"""Get the size of the model on disk."""
|
|
|
|
return calc_model_size_by_fs(
|
|
|
|
model_path=model_path,
|
|
|
|
subfolder=submodel_type.value if submodel_type else None,
|
|
|
|
variant=config.repo_variant if hasattr(config, "repo_variant") else None,
|
|
|
|
)
|
|
|
|
|
|
|
|
def _load_diffusers_config(self, model_path: Path, config_name: str = "config.json") -> Dict[str, Any]:
|
|
|
|
return ConfigLoader.load_config(model_path, config_name=config_name)
|
|
|
|
|
|
|
|
# TO DO: Add exception handling
|
|
|
|
def _hf_definition_to_type(self, module: str, class_name: str) -> ModelMixin: # fix with correct type
|
|
|
|
if module in ["diffusers", "transformers"]:
|
|
|
|
res_type = sys.modules[module]
|
|
|
|
else:
|
|
|
|
res_type = sys.modules["diffusers"].pipelines
|
|
|
|
result: ModelMixin = getattr(res_type, class_name)
|
|
|
|
return result
|
|
|
|
|
|
|
|
# TO DO: Add exception handling
|
|
|
|
def _get_hf_load_class(self, model_path: Path, submodel_type: Optional[SubModelType] = None) -> ModelMixin:
|
|
|
|
if submodel_type:
|
2024-02-06 02:55:11 +00:00
|
|
|
try:
|
|
|
|
config = self._load_diffusers_config(model_path, config_name="model_index.json")
|
|
|
|
module, class_name = config[submodel_type.value]
|
|
|
|
return self._hf_definition_to_type(module=module, class_name=class_name)
|
|
|
|
except KeyError as e:
|
|
|
|
raise InvalidModelConfigException(
|
|
|
|
f'The "{submodel_type}" submodel is not available for this model.'
|
|
|
|
) from e
|
2024-02-01 04:37:59 +00:00
|
|
|
else:
|
2024-02-06 02:55:11 +00:00
|
|
|
try:
|
|
|
|
config = self._load_diffusers_config(model_path, config_name="config.json")
|
2024-02-14 18:07:11 +00:00
|
|
|
class_name = config.get("_class_name", None)
|
|
|
|
if class_name:
|
|
|
|
return self._hf_definition_to_type(module="diffusers", class_name=class_name)
|
|
|
|
if config.get("model_type", None) == "clip_vision_model":
|
|
|
|
class_name = config.get("architectures")[0]
|
|
|
|
return self._hf_definition_to_type(module="transformers", class_name=class_name)
|
2024-02-14 18:16:15 +00:00
|
|
|
if not class_name:
|
|
|
|
raise InvalidModelConfigException("Unable to decifer Load Class based on given config.json")
|
2024-02-06 02:55:11 +00:00
|
|
|
except KeyError as e:
|
|
|
|
raise InvalidModelConfigException("An expected config.json file is missing from this model.") from e
|
2024-02-04 22:23:10 +00:00
|
|
|
|
|
|
|
# This needs to be implemented in subclasses that handle checkpoints
|
2024-02-10 23:09:45 +00:00
|
|
|
def _convert_model(self, config: AnyModelConfig, model_path: Path, output_path: Path) -> Path:
|
2024-02-04 22:23:10 +00:00
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
# This needs to be implemented in the subclass
|
|
|
|
def _load_model(
|
|
|
|
self,
|
|
|
|
model_path: Path,
|
|
|
|
model_variant: Optional[ModelRepoVariant] = None,
|
|
|
|
submodel_type: Optional[SubModelType] = None,
|
|
|
|
) -> AnyModel:
|
|
|
|
raise NotImplementedError
|