InvokeAI/invokeai/app/services/generate_initializer.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

169 lines
5.9 KiB
Python
Raw Normal View History

import os
import sys
import torch
import traceback
2023-03-03 06:02:00 +00:00
from argparse import Namespace
from omegaconf import OmegaConf
2023-03-03 06:02:00 +00:00
import invokeai.version
from ...backend import ModelManager, InvokeAIGeneratorBasicParams, InvokeAIGeneratorFactory
from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals
2023-03-03 06:02:00 +00:00
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
def get_generator_factory(args, config) -> InvokeAIGeneratorFactory:
if not args.conf:
2023-03-03 06:02:00 +00:00
config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file):
2023-03-03 06:02:00 +00:00
report_model_error(
args, FileNotFoundError(f"The file {config_file} could not be found.")
)
2023-03-03 06:02:00 +00:00
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers # type: ignore
2023-03-03 06:02:00 +00:00
transformers.logging.set_verbosity_error()
import diffusers
2023-03-03 06:02:00 +00:00
diffusers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
2023-03-03 06:02:00 +00:00
gfpgan, codeformer, esrgan = load_face_restoration(args)
# normalize the config directory relative to root
if not os.path.isabs(args.conf):
2023-03-03 06:02:00 +00:00
args.conf = os.path.normpath(os.path.join(Globals.root, args.conf))
if args.embeddings:
if not os.path.isabs(args.embedding_path):
2023-03-03 06:02:00 +00:00
embedding_path = os.path.normpath(
os.path.join(Globals.root, args.embedding_path)
)
else:
embedding_path = args.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
# load the infile as a list of lines
if args.infile:
try:
if os.path.isfile(args.infile):
2023-03-03 06:02:00 +00:00
infile = open(args.infile, "r", encoding="utf-8")
elif args.infile == "-": # stdin
infile = sys.stdin
else:
2023-03-03 06:02:00 +00:00
raise FileNotFoundError(f"{args.infile} not found.")
except (FileNotFoundError, IOError) as e:
2023-03-03 06:02:00 +00:00
print(f"{e}. Aborting.")
sys.exit(-1)
# creating an InvokeAIGeneratorFactory object:
try:
device = torch.device(choose_torch_device())
precision = 'float16' if args.precision=='float16' \
else 'float32' if args.precision=='float32' \
else choose_precision(device)
model_manager = ModelManager(
OmegaConf.load(args.conf),
precision=precision,
device_type=device,
2023-03-03 06:02:00 +00:00
max_loaded_models=args.max_loaded_models,
)
# TO DO: initialize and pass safety checker!!!
params = InvokeAIGeneratorBasicParams(
precision=precision,
)
factory = InvokeAIGeneratorFactory(model_manager, params)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(args, e)
except (IOError, KeyError) as e:
2023-03-03 06:02:00 +00:00
print(f"{e}. Aborting.")
sys.exit(-1)
if args.seamless:
#TODO: do something here ?
print(">> changed to seamless tiling mode")
# try to autoconvert new models
# autoimport new .ckpt files
if path := args.autoconvert:
model_manager.autoconvert_weights(
conf_path=args.conf,
weights_directory=path,
)
2023-03-03 06:02:00 +00:00
return factory
def load_face_restoration(opt):
try:
gfpgan, codeformer, esrgan = None, None, None
if opt.restore or opt.esrgan:
2023-03-03 06:02:00 +00:00
from invokeai.backend.restoration import Restoration
restoration = Restoration()
if opt.restore:
2023-03-03 06:02:00 +00:00
gfpgan, codeformer = restoration.load_face_restore_models(
opt.gfpgan_model_path
)
else:
2023-03-03 06:02:00 +00:00
print(">> Face restoration disabled")
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
2023-03-03 06:02:00 +00:00
print(">> Upscaling disabled")
else:
2023-03-03 06:02:00 +00:00
print(">> Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
2023-03-03 06:02:00 +00:00
print(">> You may need to install the ESRGAN and/or GFPGAN modules")
return gfpgan, codeformer, esrgan
2023-03-03 06:02:00 +00:00
def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
2023-03-03 06:02:00 +00:00
print(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
)
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all:
2023-03-03 06:02:00 +00:00
print(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
)
else:
2023-03-03 06:02:00 +00:00
response = input(
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
)
if response.startswith(("n", "N")):
return
2023-03-03 06:02:00 +00:00
print("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_args = sys.argv
2023-03-03 06:02:00 +00:00
sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir)
sys.argv.extend(config)
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)
2023-03-03 06:02:00 +00:00
from invokeai.frontend.install import invokeai_configure
invokeai_configure()
# TODO: Figure out how to restart
# print('** InvokeAI will now restart')
# sys.argv = previous_args
# main() # would rather do a os.exec(), but doesn't exist?
# sys.exit(0)