mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
137 lines
4.6 KiB
Python
137 lines
4.6 KiB
Python
|
import os
|
||
|
import sys
|
||
|
import torch
|
||
|
from argparse import Namespace
|
||
|
from omegaconf import OmegaConf
|
||
|
from pathlib import Path
|
||
|
|
||
|
import invokeai.version
|
||
|
from ...backend import ModelManager
|
||
|
from ...backend.util import choose_precision, choose_torch_device
|
||
|
from ...backend import Globals
|
||
|
|
||
|
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
|
||
|
def get_model_manager(args, config) -> ModelManager:
|
||
|
if not args.conf:
|
||
|
config_file = os.path.join(Globals.root, "configs", "models.yaml")
|
||
|
if not os.path.exists(config_file):
|
||
|
report_model_error(
|
||
|
args, FileNotFoundError(f"The file {config_file} could not be found.")
|
||
|
)
|
||
|
|
||
|
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}")
|
||
|
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
|
||
|
|
||
|
# these two lines prevent a horrible warning message from appearing
|
||
|
# when the frozen CLIP tokenizer is imported
|
||
|
import transformers # type: ignore
|
||
|
|
||
|
transformers.logging.set_verbosity_error()
|
||
|
import diffusers
|
||
|
|
||
|
diffusers.logging.set_verbosity_error()
|
||
|
|
||
|
# normalize the config directory relative to root
|
||
|
if not os.path.isabs(args.conf):
|
||
|
args.conf = os.path.normpath(os.path.join(Globals.root, args.conf))
|
||
|
|
||
|
if args.embeddings:
|
||
|
if not os.path.isabs(args.embedding_path):
|
||
|
embedding_path = os.path.normpath(
|
||
|
os.path.join(Globals.root, args.embedding_path)
|
||
|
)
|
||
|
else:
|
||
|
embedding_path = args.embedding_path
|
||
|
else:
|
||
|
embedding_path = None
|
||
|
|
||
|
# migrate legacy models
|
||
|
ModelManager.migrate_models()
|
||
|
|
||
|
# load the infile as a list of lines
|
||
|
if args.infile:
|
||
|
try:
|
||
|
if os.path.isfile(args.infile):
|
||
|
infile = open(args.infile, "r", encoding="utf-8")
|
||
|
elif args.infile == "-": # stdin
|
||
|
infile = sys.stdin
|
||
|
else:
|
||
|
raise FileNotFoundError(f"{args.infile} not found.")
|
||
|
except (FileNotFoundError, IOError) as e:
|
||
|
print(f"{e}. Aborting.")
|
||
|
sys.exit(-1)
|
||
|
|
||
|
# creating the model manager
|
||
|
try:
|
||
|
device = torch.device(choose_torch_device())
|
||
|
precision = 'float16' if args.precision=='float16' \
|
||
|
else 'float32' if args.precision=='float32' \
|
||
|
else choose_precision(device)
|
||
|
|
||
|
model_manager = ModelManager(
|
||
|
OmegaConf.load(args.conf),
|
||
|
precision=precision,
|
||
|
device_type=device,
|
||
|
max_loaded_models=args.max_loaded_models,
|
||
|
embedding_path = Path(embedding_path),
|
||
|
)
|
||
|
except (FileNotFoundError, TypeError, AssertionError) as e:
|
||
|
report_model_error(args, e)
|
||
|
except (IOError, KeyError) as e:
|
||
|
print(f"{e}. Aborting.")
|
||
|
sys.exit(-1)
|
||
|
|
||
|
if args.seamless:
|
||
|
#TODO: do something here ?
|
||
|
print(">> changed to seamless tiling mode")
|
||
|
|
||
|
# try to autoconvert new models
|
||
|
# autoimport new .ckpt files
|
||
|
if path := args.autoconvert:
|
||
|
model_manager.autoconvert_weights(
|
||
|
conf_path=args.conf,
|
||
|
weights_directory=path,
|
||
|
)
|
||
|
|
||
|
return model_manager
|
||
|
|
||
|
def report_model_error(opt: Namespace, e: Exception):
|
||
|
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
|
||
|
print(
|
||
|
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
|
||
|
)
|
||
|
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
|
||
|
if yes_to_all:
|
||
|
print(
|
||
|
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||
|
)
|
||
|
else:
|
||
|
response = input(
|
||
|
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
|
||
|
)
|
||
|
if response.startswith(("n", "N")):
|
||
|
return
|
||
|
|
||
|
print("invokeai-configure is launching....\n")
|
||
|
|
||
|
# Match arguments that were set on the CLI
|
||
|
# only the arguments accepted by the configuration script are parsed
|
||
|
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
|
||
|
config = ["--config", opt.conf] if opt.conf is not None else []
|
||
|
previous_args = sys.argv
|
||
|
sys.argv = ["invokeai-configure"]
|
||
|
sys.argv.extend(root_dir)
|
||
|
sys.argv.extend(config)
|
||
|
if yes_to_all is not None:
|
||
|
for arg in yes_to_all.split():
|
||
|
sys.argv.append(arg)
|
||
|
|
||
|
from invokeai.frontend.install import invokeai_configure
|
||
|
|
||
|
invokeai_configure()
|
||
|
# TODO: Figure out how to restart
|
||
|
# print('** InvokeAI will now restart')
|
||
|
# sys.argv = previous_args
|
||
|
# main() # would rather do a os.exec(), but doesn't exist?
|
||
|
# sys.exit(0)
|