mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
95 lines
3.8 KiB
Python
95 lines
3.8 KiB
Python
|
import numpy as np
|
||
|
import torch
|
||
|
from PIL import Image
|
||
|
from spandrel import ImageModelDescriptor, ModelLoader
|
||
|
|
||
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
||
|
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
|
||
|
from invokeai.app.invocations.primitives import ImageOutput
|
||
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||
|
from invokeai.backend.util.devices import TorchDevice
|
||
|
|
||
|
|
||
|
def pil_to_tensor(image: Image.Image) -> torch.Tensor:
|
||
|
"""Convert PIL Image to torch.Tensor.
|
||
|
|
||
|
Args:
|
||
|
image (Image.Image): A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
||
|
|
||
|
Returns:
|
||
|
torch.Tensor: A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
||
|
"""
|
||
|
image_np = np.array(image)
|
||
|
# (H, W, C) -> (C, H, W)
|
||
|
image_np = np.transpose(image_np, (2, 0, 1))
|
||
|
image_np = image_np / 255
|
||
|
image_tensor = torch.from_numpy(image_np).float()
|
||
|
# (C, H, W) -> (N, C, H, W)
|
||
|
image_tensor = image_tensor.unsqueeze(0)
|
||
|
return image_tensor
|
||
|
|
||
|
|
||
|
def tensor_to_pil(tensor: torch.Tensor) -> Image.Image:
|
||
|
"""Convert torch.Tensor to PIL Image.
|
||
|
|
||
|
Args:
|
||
|
tensor (torch.Tensor): A torch.Tensor with shape (N, C, H, W) and values in the range [0, 1].
|
||
|
|
||
|
Returns:
|
||
|
Image.Image: A PIL Image with shape (H, W, C) and values in the range [0, 255].
|
||
|
"""
|
||
|
# (N, C, H, W) -> (C, H, W)
|
||
|
tensor = tensor.squeeze(0)
|
||
|
# (C, H, W) -> (H, W, C)
|
||
|
tensor = tensor.permute(1, 2, 0)
|
||
|
tensor = tensor.clamp(0, 1)
|
||
|
tensor = (tensor * 255).cpu().detach().numpy().astype(np.uint8)
|
||
|
image = Image.fromarray(tensor)
|
||
|
return image
|
||
|
|
||
|
|
||
|
@invocation("upscale_spandrel", title="Upscale (spandrel)", tags=["upscale"], category="upscale", version="1.0.0")
|
||
|
class UpscaleSpandrelInvocation(BaseInvocation, WithMetadata, WithBoard):
|
||
|
"""Upscales an image using any upscaler supported by spandrel (https://github.com/chaiNNer-org/spandrel)."""
|
||
|
|
||
|
image: ImageField = InputField(description="The input image")
|
||
|
# TODO(ryand): Figure out how to handle all the spandrel models so that you don't have to enter a string.
|
||
|
model_path: str = InputField(description="The path to the upscaling model to use.")
|
||
|
|
||
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
||
|
image = context.images.get_pil(self.image.image_name)
|
||
|
|
||
|
# Load the model.
|
||
|
# TODO(ryand): Integrate with the model manager.
|
||
|
model = ModelLoader().load_from_file(self.model_path)
|
||
|
if not isinstance(model, ImageModelDescriptor):
|
||
|
raise ValueError(
|
||
|
f"Loaded a spandrel model of type '{type(model)}'. Only image-to-image models are supported "
|
||
|
"('ImageModelDescriptor')."
|
||
|
)
|
||
|
|
||
|
# Select model device and dtype.
|
||
|
torch_dtype = TorchDevice.choose_torch_dtype()
|
||
|
torch_device = TorchDevice.choose_torch_device()
|
||
|
if (torch_dtype == torch.float16 and not model.supports_half) or (
|
||
|
torch_dtype == torch.bfloat16 and not model.supports_bfloat16
|
||
|
):
|
||
|
context.logger.warning(
|
||
|
f"The configured dtype ('{torch_dtype}') is not supported by the {type(model.model)} model. Falling "
|
||
|
"back to 'float32'."
|
||
|
)
|
||
|
torch_dtype = torch.float32
|
||
|
model.to(device=torch_device, dtype=torch_dtype)
|
||
|
|
||
|
# Prepare input image for inference.
|
||
|
image_tensor = pil_to_tensor(image)
|
||
|
image_tensor = image_tensor.to(device=torch_device, dtype=torch_dtype)
|
||
|
|
||
|
# Run inference.
|
||
|
image_tensor = model(image_tensor)
|
||
|
|
||
|
# Convert the output tensor to a PIL image.
|
||
|
pil_image = tensor_to_pil(image_tensor)
|
||
|
image_dto = context.images.save(image=pil_image)
|
||
|
return ImageOutput.build(image_dto)
|