mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
143 lines
5.3 KiB
Python
143 lines
5.3 KiB
Python
|
"""Adapted from https://github.com/lllyasviel/ControlNet (Apache-2.0 license)."""
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from einops import rearrange
|
||
|
from huggingface_hub import hf_hub_download
|
||
|
from PIL import Image
|
||
|
|
||
|
from invokeai.backend.image_util.util import (
|
||
|
fit_image_to_resolution,
|
||
|
non_maximum_suppression,
|
||
|
normalize_image_channel_count,
|
||
|
np_to_pil,
|
||
|
pil_to_np,
|
||
|
safe_step,
|
||
|
)
|
||
|
|
||
|
|
||
|
class DoubleConvBlock(torch.nn.Module):
|
||
|
def __init__(self, input_channel, output_channel, layer_number):
|
||
|
super().__init__()
|
||
|
self.convs = torch.nn.Sequential()
|
||
|
self.convs.append(
|
||
|
torch.nn.Conv2d(
|
||
|
in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1
|
||
|
)
|
||
|
)
|
||
|
for i in range(1, layer_number):
|
||
|
self.convs.append(
|
||
|
torch.nn.Conv2d(
|
||
|
in_channels=output_channel,
|
||
|
out_channels=output_channel,
|
||
|
kernel_size=(3, 3),
|
||
|
stride=(1, 1),
|
||
|
padding=1,
|
||
|
)
|
||
|
)
|
||
|
self.projection = torch.nn.Conv2d(
|
||
|
in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0
|
||
|
)
|
||
|
|
||
|
def __call__(self, x, down_sampling=False):
|
||
|
h = x
|
||
|
if down_sampling:
|
||
|
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
|
||
|
for conv in self.convs:
|
||
|
h = conv(h)
|
||
|
h = torch.nn.functional.relu(h)
|
||
|
return h, self.projection(h)
|
||
|
|
||
|
|
||
|
class ControlNetHED_Apache2(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
|
||
|
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
|
||
|
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
|
||
|
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
|
||
|
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
|
||
|
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
h = x - self.norm
|
||
|
h, projection1 = self.block1(h)
|
||
|
h, projection2 = self.block2(h, down_sampling=True)
|
||
|
h, projection3 = self.block3(h, down_sampling=True)
|
||
|
h, projection4 = self.block4(h, down_sampling=True)
|
||
|
h, projection5 = self.block5(h, down_sampling=True)
|
||
|
return projection1, projection2, projection3, projection4, projection5
|
||
|
|
||
|
|
||
|
class HEDProcessor:
|
||
|
"""Holistically-Nested Edge Detection.
|
||
|
|
||
|
On instantiation, loads the HED model from the HuggingFace Hub.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
model_path = hf_hub_download("lllyasviel/Annotators", "ControlNetHED.pth")
|
||
|
self.network = ControlNetHED_Apache2()
|
||
|
self.network.load_state_dict(torch.load(model_path, map_location="cpu"))
|
||
|
self.network.float().eval()
|
||
|
|
||
|
def to(self, device: torch.device):
|
||
|
self.network.to(device)
|
||
|
return self
|
||
|
|
||
|
def run(
|
||
|
self,
|
||
|
input_image: Image.Image,
|
||
|
detect_resolution: int = 512,
|
||
|
image_resolution: int = 512,
|
||
|
safe: bool = False,
|
||
|
scribble: bool = False,
|
||
|
) -> Image.Image:
|
||
|
"""Processes an image and returns the detected edges.
|
||
|
|
||
|
Args:
|
||
|
input_image: The input image.
|
||
|
detect_resolution: The resolution to fit the image to before edge detection.
|
||
|
image_resolution: The resolution to fit the edges to before returning.
|
||
|
safe: Whether to apply safe step to the detected edges.
|
||
|
scribble: Whether to apply non-maximum suppression and Gaussian blur to the detected edges.
|
||
|
|
||
|
Returns:
|
||
|
The detected edges.
|
||
|
"""
|
||
|
device = next(iter(self.network.parameters())).device
|
||
|
np_image = pil_to_np(input_image)
|
||
|
np_image = normalize_image_channel_count(np_image)
|
||
|
np_image = fit_image_to_resolution(np_image, detect_resolution)
|
||
|
|
||
|
assert np_image.ndim == 3
|
||
|
height, width, _channels = np_image.shape
|
||
|
with torch.no_grad():
|
||
|
image_hed = torch.from_numpy(np_image.copy()).float().to(device)
|
||
|
image_hed = rearrange(image_hed, "h w c -> 1 c h w")
|
||
|
edges = self.network(image_hed)
|
||
|
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
|
||
|
edges = [cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR) for e in edges]
|
||
|
edges = np.stack(edges, axis=2)
|
||
|
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
|
||
|
if safe:
|
||
|
edge = safe_step(edge)
|
||
|
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
|
||
|
|
||
|
detected_map = edge
|
||
|
detected_map = normalize_image_channel_count(detected_map)
|
||
|
|
||
|
img = fit_image_to_resolution(np_image, image_resolution)
|
||
|
height, width, _channels = img.shape
|
||
|
|
||
|
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
|
||
|
|
||
|
if scribble:
|
||
|
detected_map = non_maximum_suppression(detected_map, 127, 3.0)
|
||
|
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
||
|
detected_map[detected_map > 4] = 255
|
||
|
detected_map[detected_map < 255] = 0
|
||
|
|
||
|
return np_to_pil(detected_map)
|