mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
76 lines
2.7 KiB
Python
76 lines
2.7 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
from contextlib import contextmanager
|
||
|
from typing import Callable, Dict, List, Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from diffusers import UNet2DConditionModel
|
||
|
from diffusers.models.lora import LoRACompatibleConv
|
||
|
|
||
|
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
|
||
|
|
||
|
|
||
|
class SeamlessExt(ExtensionBase):
|
||
|
def __init__(
|
||
|
self,
|
||
|
seamless_axes: List[str],
|
||
|
):
|
||
|
super().__init__()
|
||
|
self._seamless_axes = seamless_axes
|
||
|
|
||
|
@contextmanager
|
||
|
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
|
||
|
with self.static_patch_model(
|
||
|
model=unet,
|
||
|
seamless_axes=self._seamless_axes,
|
||
|
):
|
||
|
yield
|
||
|
|
||
|
@staticmethod
|
||
|
@contextmanager
|
||
|
def static_patch_model(
|
||
|
model: torch.nn.Module,
|
||
|
seamless_axes: List[str],
|
||
|
):
|
||
|
if not seamless_axes:
|
||
|
yield
|
||
|
return
|
||
|
|
||
|
# override conv_forward
|
||
|
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
|
||
|
def _conv_forward_asymmetric(
|
||
|
self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None
|
||
|
):
|
||
|
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
|
||
|
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
|
||
|
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
|
||
|
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
|
||
|
return torch.nn.functional.conv2d(
|
||
|
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
|
||
|
)
|
||
|
|
||
|
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
|
||
|
|
||
|
try:
|
||
|
x_mode = "circular" if "x" in seamless_axes else "constant"
|
||
|
y_mode = "circular" if "y" in seamless_axes else "constant"
|
||
|
|
||
|
conv_layers: List[torch.nn.Conv2d] = []
|
||
|
|
||
|
for module in model.modules():
|
||
|
if isinstance(module, torch.nn.Conv2d):
|
||
|
conv_layers.append(module)
|
||
|
|
||
|
for layer in conv_layers:
|
||
|
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
|
||
|
layer.lora_layer = lambda *x: 0
|
||
|
original_layers.append((layer, layer._conv_forward))
|
||
|
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
|
||
|
|
||
|
yield
|
||
|
|
||
|
finally:
|
||
|
for layer, orig_conv_forward in original_layers:
|
||
|
layer._conv_forward = orig_conv_forward
|