InvokeAI/invokeai/app/invocations/flux_text_encoder.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

96 lines
3.9 KiB
Python
Raw Normal View History

import torch
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
2024-08-15 14:27:42 +00:00
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
from invokeai.app.invocations.model import CLIPField, T5EncoderField
from invokeai.app.invocations.primitives import ConditioningOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData, FLUXConditioningInfo
from invokeai.backend.util.devices import TorchDevice
@invocation(
"flux_text_encoder",
title="FLUX Text Encoding",
tags=["image"],
category="image",
version="1.0.0",
)
class FluxTextEncoderInvocation(BaseInvocation):
clip: CLIPField = InputField(
title="CLIP",
description=FieldDescriptions.clip,
input=Input.Connection,
)
t5Encoder: T5EncoderField = InputField(
2024-08-15 14:49:14 +00:00
title="T5Encoder",
description=FieldDescriptions.t5Encoder,
input=Input.Connection,
)
positive_prompt: str = InputField(description="Positive prompt for text-to-image generation.")
# TODO(ryand): Should we create a new return type for this invocation? This ConditioningOutput is clearly not
# compatible with other ConditioningOutputs.
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ConditioningOutput:
t5_embeddings, clip_embeddings = self._encode_prompt(context)
conditioning_data = ConditioningFieldData(
conditionings=[FLUXConditioningInfo(clip_embeds=clip_embeddings, t5_embeds=t5_embeddings)]
)
conditioning_name = context.conditioning.save(conditioning_data)
return ConditioningOutput.build(conditioning_name)
2024-08-15 14:27:42 +00:00
def _encode_prompt(self, context: InvocationContext) -> tuple[torch.Tensor, torch.Tensor]:
# TODO: Determine the T5 max sequence length based on the model.
# if self.model == "flux-schnell":
max_seq_len = 256
# # elif self.model == "flux-dev":
# # max_seq_len = 512
# else:
# raise ValueError(f"Unknown model: {self.model}")
# Load CLIP.
clip_tokenizer_info = context.models.load(self.clip.tokenizer)
clip_text_encoder_info = context.models.load(self.clip.text_encoder)
# Load T5.
t5_tokenizer_info = context.models.load(self.t5Encoder.tokenizer)
t5_text_encoder_info = context.models.load(self.t5Encoder.text_encoder)
with (
clip_text_encoder_info as clip_text_encoder,
t5_text_encoder_info as t5_text_encoder,
clip_tokenizer_info as clip_tokenizer,
t5_tokenizer_info as t5_tokenizer,
):
assert isinstance(clip_text_encoder, CLIPTextModel)
assert isinstance(t5_text_encoder, T5EncoderModel)
assert isinstance(clip_tokenizer, CLIPTokenizer)
assert isinstance(t5_tokenizer, T5TokenizerFast)
pipeline = FluxPipeline(
scheduler=None,
vae=None,
text_encoder=clip_text_encoder,
tokenizer=clip_tokenizer,
text_encoder_2=t5_text_encoder,
tokenizer_2=t5_tokenizer,
transformer=None,
)
# prompt_embeds: T5 embeddings
# pooled_prompt_embeds: CLIP embeddings
prompt_embeds, pooled_prompt_embeds, _ = pipeline.encode_prompt(
prompt=self.positive_prompt,
prompt_2=self.positive_prompt,
device=TorchDevice.choose_torch_device(),
max_sequence_length=max_seq_len,
)
assert isinstance(prompt_embeds, torch.Tensor)
assert isinstance(pooled_prompt_embeds, torch.Tensor)
return prompt_embeds, pooled_prompt_embeds