InvokeAI/invokeai/backend/model_management/lora.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

895 lines
28 KiB
Python
Raw Normal View History

2023-05-29 22:11:00 +00:00
from __future__ import annotations
2023-05-30 23:12:27 +00:00
import copy
2023-05-29 22:11:00 +00:00
from contextlib import contextmanager
2023-07-05 23:18:25 +00:00
from typing import Optional, Dict, Tuple, Any, Union, List
from pathlib import Path
2023-05-29 22:11:00 +00:00
import torch
from safetensors.torch import load_file
from torch.utils.hooks import RemovableHandle
from diffusers.models import UNet2DConditionModel
from transformers import CLIPTextModel
from onnx import numpy_helper
from onnxruntime import OrtValue
import numpy as np
2023-05-29 22:11:00 +00:00
2023-05-30 23:12:27 +00:00
from compel.embeddings_provider import BaseTextualInversionManager
from diffusers.models import UNet2DConditionModel
2023-05-29 22:11:00 +00:00
from safetensors.torch import load_file
2023-07-05 20:40:47 +00:00
from transformers import CLIPTextModel, CLIPTokenizer
2023-05-30 23:12:27 +00:00
2023-06-21 01:24:25 +00:00
# TODO: rename and split this file
2023-07-28 13:46:44 +00:00
2023-05-29 22:11:00 +00:00
class LoRALayerBase:
2023-07-28 13:46:44 +00:00
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
2023-05-29 22:11:00 +00:00
2023-07-28 13:46:44 +00:00
# @property
# def scale(self):
2023-05-29 22:11:00 +00:00
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
2023-07-28 13:46:44 +00:00
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
2023-05-29 22:11:00 +00:00
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
2023-07-28 13:46:44 +00:00
self.rank = None # set in layer implementation
2023-05-29 22:11:00 +00:00
self.layer_key = layer_key
def forward(
self,
module: torch.nn.Module,
2023-07-28 13:46:44 +00:00
input_h: Any, # for real looks like Tuple[torch.nn.Tensor] but not sure
2023-05-29 22:11:00 +00:00
multiplier: float,
):
if type(module) == torch.nn.Conv2d:
op = torch.nn.functional.conv2d
extra_args = dict(
stride=module.stride,
padding=module.padding,
dilation=module.dilation,
groups=module.groups,
)
else:
op = torch.nn.functional.linear
extra_args = {}
weight = self.get_weight()
2023-05-29 22:11:00 +00:00
bias = self.bias if self.bias is not None else 0
scale = self.alpha / self.rank if (self.alpha and self.rank) else 1.0
2023-07-28 13:46:44 +00:00
return (
op(
*input_h,
(weight + bias).view(module.weight.shape),
None,
**extra_args,
)
* multiplier
* scale
)
2023-05-29 22:11:00 +00:00
def get_weight(self):
2023-05-29 22:11:00 +00:00
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
2023-07-28 13:46:44 +00:00
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
2023-05-29 22:11:00 +00:00
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self):
2023-05-29 22:11:00 +00:00
if self.mid is not None:
2023-07-05 20:40:47 +00:00
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
2023-05-29 22:11:00 +00:00
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
2023-07-28 13:46:44 +00:00
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
2023-05-29 22:11:00 +00:00
def __init__(
self,
layer_key: str,
values: dict,
):
2023-06-26 01:33:37 +00:00
super().__init__(layer_key, values)
2023-05-29 22:11:00 +00:00
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self):
2023-05-29 22:11:00 +00:00
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
2023-07-28 13:46:44 +00:00
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
2023-05-29 22:11:00 +00:00
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
2023-07-28 13:46:44 +00:00
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
2023-05-29 22:11:00 +00:00
def __init__(
self,
layer_key: str,
values: dict,
):
2023-07-28 13:46:44 +00:00
super().__init__(layer_key, values)
2023-05-29 22:11:00 +00:00
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
2023-07-28 13:46:44 +00:00
self.rank = None # unscaled
2023-05-29 22:11:00 +00:00
def get_weight(self):
2023-05-29 22:11:00 +00:00
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
2023-07-28 13:46:44 +00:00
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
2023-05-29 22:11:00 +00:00
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
2023-05-29 22:11:00 +00:00
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
2023-07-28 13:46:44 +00:00
class LoRAModel: # (torch.nn.Module):
2023-05-29 22:11:00 +00:00
_name: str
layers: Dict[str, LoRALayer]
_device: torch.device
_dtype: torch.dtype
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
device: torch.device,
dtype: torch.dtype,
):
self._name = name
self._device = device or torch.cpu
self._dtype = dtype or torch.float32
self.layers = layers
@property
def name(self):
return self._name
@property
def device(self):
return self._device
@property
def dtype(self):
2023-07-28 13:46:44 +00:00
return self._dtype
2023-05-29 22:11:00 +00:00
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> LoRAModel:
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
self._device = device
self._dtype = dtype
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
device=device,
dtype=dtype,
2023-07-28 13:46:44 +00:00
name=file_path.stem, # TODO:
2023-05-29 22:11:00 +00:00
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
else:
# TODO: diff/ia3/... format
2023-07-28 13:46:44 +00:00
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key}")
2023-05-29 22:11:00 +00:00
return
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
"""
loras = [
(lora_model1, 0.7),
(lora_model2, 0.4),
]
with LoRAHelper.apply_lora_unet(unet, loras):
# unet with applied loras
# unmodified unet
"""
2023-07-28 13:46:44 +00:00
2023-05-29 22:11:00 +00:00
# TODO: rename smth like ModelPatcher and add TI method?
2023-05-30 23:12:27 +00:00
class ModelPatcher:
2023-05-29 22:11:00 +00:00
@staticmethod
def _resolve_lora_key(model: torch.nn.Module, lora_key: str, prefix: str) -> Tuple[str, torch.nn.Module]:
assert "." not in lora_key
if not lora_key.startswith(prefix):
raise Exception(f"lora_key with invalid prefix: {lora_key}, {prefix}")
module = model
module_key = ""
2023-07-28 13:46:44 +00:00
key_parts = lora_key[len(prefix) :].split("_")
2023-05-29 22:11:00 +00:00
submodule_name = key_parts.pop(0)
2023-07-28 13:46:44 +00:00
2023-05-29 22:11:00 +00:00
while len(key_parts) > 0:
try:
module = module.get_submodule(submodule_name)
module_key += "." + submodule_name
submodule_name = key_parts.pop(0)
except:
submodule_name += "_" + key_parts.pop(0)
module = module.get_submodule(submodule_name)
module_key = (module_key + "." + submodule_name).lstrip(".")
2023-05-29 22:11:00 +00:00
return (module_key, module)
@staticmethod
def _lora_forward_hook(
2023-07-24 06:58:24 +00:00
applied_loras: List[Tuple[LoRAModel, float]],
2023-05-29 22:11:00 +00:00
layer_name: str,
):
def lora_forward(module, input_h, output):
if len(applied_loras) == 0:
return output
for lora, weight in applied_loras:
layer = lora.layers.get(layer_name, None)
if layer is None:
continue
output += layer.forward(module, input_h, weight)
return output
return lora_forward
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: UNet2DConditionModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: CLIPTextModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
@classmethod
@contextmanager
def apply_lora(
cls,
model: torch.nn.Module,
2023-07-24 06:58:24 +00:00
loras: List[Tuple[LoRAModel, float]],
2023-05-29 22:11:00 +00:00
prefix: str,
):
original_weights = dict()
2023-05-29 22:11:00 +00:00
try:
2023-07-05 04:39:15 +00:00
with torch.no_grad():
for lora, lora_weight in loras:
2023-07-28 13:46:44 +00:00
# assert lora.device.type == "cpu"
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
2023-05-29 22:11:00 +00:00
module_key, module = cls._resolve_lora_key(model, layer_key, prefix)
if module_key not in original_weights:
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
# enable autocast to calc fp16 loras on cpu
2023-07-28 13:46:44 +00:00
# with torch.autocast(device_type="cpu"):
layer.to(dtype=torch.float32)
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
layer_weight = layer.get_weight() * lora_weight * layer_scale
if module.weight.shape != layer_weight.shape:
# TODO: debug on lycoris
layer_weight = layer_weight.reshape(module.weight.shape)
module.weight += layer_weight.to(device=module.weight.device, dtype=module.weight.dtype)
2023-05-29 22:11:00 +00:00
2023-07-28 13:46:44 +00:00
yield # wait for context manager exit
2023-05-29 22:11:00 +00:00
finally:
2023-07-05 04:39:15 +00:00
with torch.no_grad():
for module_key, weight in original_weights.items():
model.get_submodule(module_key).weight.copy_(weight)
2023-05-30 23:12:27 +00:00
@classmethod
@contextmanager
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
ti_list: List[Any],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
init_tokens_count = None
new_tokens_added = None
try:
ti_tokenizer = copy.deepcopy(tokenizer)
ti_manager = TextualInversionManager(ti_tokenizer)
2023-05-30 23:12:27 +00:00
init_tokens_count = text_encoder.resize_token_embeddings(None).num_embeddings
def _get_trigger(ti, index):
trigger = ti.name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
# modify text_encoder
text_encoder.resize_token_embeddings(init_tokens_count + new_tokens_added)
model_embeddings = text_encoder.get_input_embeddings()
for ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i]
trigger = _get_trigger(ti, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
if model_embeddings.weight.data[token_id].shape != embedding.shape:
raise ValueError(
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {model_embeddings.weight.data[token_id].shape[0]}."
)
2023-07-28 13:46:44 +00:00
model_embeddings.weight.data[token_id] = embedding.to(
device=text_encoder.device, dtype=text_encoder.dtype
)
2023-05-30 23:12:27 +00:00
ti_tokens.append(token_id)
if len(ti_tokens) > 1:
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
yield ti_tokenizer, ti_manager
finally:
if init_tokens_count and new_tokens_added:
text_encoder.resize_token_embeddings(init_tokens_count)
2023-07-06 13:09:40 +00:00
@classmethod
@contextmanager
def apply_clip_skip(
cls,
text_encoder: CLIPTextModel,
clip_skip: int,
):
skipped_layers = []
try:
for i in range(clip_skip):
skipped_layers.append(text_encoder.text_model.encoder.layers.pop(-1))
yield
finally:
while len(skipped_layers) > 0:
text_encoder.text_model.encoder.layers.append(skipped_layers.pop())
2023-07-28 13:46:44 +00:00
2023-05-30 23:12:27 +00:00
class TextualInversionModel:
name: str
2023-07-28 13:46:44 +00:00
embedding: torch.Tensor # [n, 768]|[n, 1280]
2023-05-30 23:12:27 +00:00
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if not isinstance(file_path, Path):
file_path = Path(file_path)
2023-07-28 13:46:44 +00:00
result = cls() # TODO:
result.name = file_path.stem # TODO:
2023-05-30 23:12:27 +00:00
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
# both v1 and v2 format embeddings
# difference mostly in metadata
if "string_to_param" in state_dict:
if len(state_dict["string_to_param"]) > 1:
2023-07-28 13:46:44 +00:00
print(
f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first token will be used.'
)
2023-05-30 23:12:27 +00:00
result.embedding = next(iter(state_dict["string_to_param"].values()))
# v3 (easynegative)
elif "emb_params" in state_dict:
result.embedding = state_dict["emb_params"]
# v4(diffusers bin files)
else:
result.embedding = next(iter(state_dict.values()))
2023-07-05 16:46:00 +00:00
if len(result.embedding.shape) == 1:
result.embedding = result.embedding.unsqueeze(0)
2023-05-30 23:12:27 +00:00
if not isinstance(result.embedding, torch.Tensor):
raise ValueError(f"Invalid embeddings file: {file_path.name}")
return result
class TextualInversionManager(BaseTextualInversionManager):
pad_tokens: Dict[int, List[int]]
tokenizer: CLIPTokenizer
2023-05-30 23:12:27 +00:00
def __init__(self, tokenizer: CLIPTokenizer):
2023-05-30 23:12:27 +00:00
self.pad_tokens = dict()
self.tokenizer = tokenizer
2023-05-30 23:12:27 +00:00
2023-07-28 13:46:44 +00:00
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: list[int]) -> list[int]:
2023-05-30 23:12:27 +00:00
if len(self.pad_tokens) == 0:
return token_ids
if token_ids[0] == self.tokenizer.bos_token_id:
raise ValueError("token_ids must not start with bos_token_id")
if token_ids[-1] == self.tokenizer.eos_token_id:
raise ValueError("token_ids must not end with eos_token_id")
2023-05-30 23:12:27 +00:00
new_token_ids = []
for token_id in token_ids:
new_token_ids.append(token_id)
if token_id in self.pad_tokens:
new_token_ids.extend(self.pad_tokens[token_id])
return new_token_ids
class ONNXModelPatcher:
2023-07-28 13:59:35 +00:00
from .models.base import IAIOnnxRuntimeModel, OnnxRuntimeModel
2023-07-28 14:00:09 +00:00
@classmethod
@contextmanager
def apply_lora_unet(
cls,
unet: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(unet, loras, "lora_unet_"):
yield
@classmethod
@contextmanager
def apply_lora_text_encoder(
cls,
text_encoder: OnnxRuntimeModel,
loras: List[Tuple[LoRAModel, float]],
):
with cls.apply_lora(text_encoder, loras, "lora_te_"):
yield
2023-06-21 01:24:25 +00:00
# based on
# https://github.com/ssube/onnx-web/blob/ca2e436f0623e18b4cfe8a0363fcfcf10508acf7/api/onnx_web/convert/diffusion/lora.py#L323
@classmethod
@contextmanager
def apply_lora(
cls,
model: IAIOnnxRuntimeModel,
loras: List[Tuple[LoraModel, float]],
prefix: str,
):
from .models.base import IAIOnnxRuntimeModel
2023-07-28 13:46:44 +00:00
if not isinstance(model, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_weights = dict()
try:
blended_loras = dict()
for lora, lora_weight in loras:
for layer_key, layer in lora.layers.items():
if not layer_key.startswith(prefix):
continue
2023-07-20 18:02:23 +00:00
layer.to(dtype=torch.float32)
layer_key = layer_key.replace(prefix, "")
layer_weight = layer.get_weight().detach().cpu().numpy() * lora_weight
if layer_key is blended_loras:
blended_loras[layer_key] += layer_weight
else:
blended_loras[layer_key] = layer_weight
node_names = dict()
for node in model.nodes.values():
node_names[node.name.replace("/", "_").replace(".", "_").lstrip("_")] = node.name
for layer_key, lora_weight in blended_loras.items():
conv_key = layer_key + "_Conv"
gemm_key = layer_key + "_Gemm"
matmul_key = layer_key + "_MatMul"
if conv_key in node_names or gemm_key in node_names:
if conv_key in node_names:
conv_node = model.nodes[node_names[conv_key]]
else:
conv_node = model.nodes[node_names[gemm_key]]
weight_name = [n for n in conv_node.input if ".weight" in n][0]
orig_weight = model.tensors[weight_name]
if orig_weight.shape[-2:] == (1, 1):
if lora_weight.shape[-2:] == (1, 1):
new_weight = orig_weight.squeeze((3, 2)) + lora_weight.squeeze((3, 2))
else:
new_weight = orig_weight.squeeze((3, 2)) + lora_weight
new_weight = np.expand_dims(new_weight, (2, 3))
else:
if orig_weight.shape != lora_weight.shape:
new_weight = orig_weight + lora_weight.reshape(orig_weight.shape)
else:
new_weight = orig_weight + lora_weight
orig_weights[weight_name] = orig_weight
model.tensors[weight_name] = new_weight.astype(orig_weight.dtype)
elif matmul_key in node_names:
weight_node = model.nodes[node_names[matmul_key]]
matmul_name = [n for n in weight_node.input if "MatMul" in n][0]
orig_weight = model.tensors[matmul_name]
new_weight = orig_weight + lora_weight.transpose()
orig_weights[matmul_name] = orig_weight
model.tensors[matmul_name] = new_weight.astype(orig_weight.dtype)
else:
# warn? err?
pass
yield
finally:
# restore original weights
for name, orig_weight in orig_weights.items():
model.tensors[name] = orig_weight
@classmethod
@contextmanager
def apply_ti(
cls,
tokenizer: CLIPTokenizer,
text_encoder: IAIOnnxRuntimeModel,
ti_list: List[Any],
) -> Tuple[CLIPTokenizer, TextualInversionManager]:
from .models.base import IAIOnnxRuntimeModel
2023-07-28 13:46:44 +00:00
if not isinstance(text_encoder, IAIOnnxRuntimeModel):
raise Exception("Only IAIOnnxRuntimeModel models supported")
orig_embeddings = None
try:
ti_tokenizer = copy.deepcopy(tokenizer)
ti_manager = TextualInversionManager(ti_tokenizer)
def _get_trigger(ti, index):
trigger = ti.name
if index > 0:
trigger += f"-!pad-{i}"
return f"<{trigger}>"
# modify tokenizer
new_tokens_added = 0
for ti in ti_list:
for i in range(ti.embedding.shape[0]):
new_tokens_added += ti_tokenizer.add_tokens(_get_trigger(ti, i))
# modify text_encoder
orig_embeddings = text_encoder.tensors["text_model.embeddings.token_embedding.weight"]
embeddings = np.concatenate(
2023-07-28 13:46:44 +00:00
(np.copy(orig_embeddings), np.zeros((new_tokens_added, orig_embeddings.shape[1]))),
axis=0,
)
for ti in ti_list:
ti_tokens = []
for i in range(ti.embedding.shape[0]):
embedding = ti.embedding[i].detach().numpy()
trigger = _get_trigger(ti, i)
token_id = ti_tokenizer.convert_tokens_to_ids(trigger)
if token_id == ti_tokenizer.unk_token_id:
raise RuntimeError(f"Unable to find token id for token '{trigger}'")
if embeddings[token_id].shape != embedding.shape:
raise ValueError(
f"Cannot load embedding for {trigger}. It was trained on a model with token dimension {embedding.shape[0]}, but the current model has token dimension {embeddings[token_id].shape[0]}."
)
embeddings[token_id] = embedding
ti_tokens.append(token_id)
if len(ti_tokens) > 1:
ti_manager.pad_tokens[ti_tokens[0]] = ti_tokens[1:]
2023-07-28 13:46:44 +00:00
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = embeddings.astype(
orig_embeddings.dtype
)
yield ti_tokenizer, ti_manager
finally:
# restore
if orig_embeddings is not None:
text_encoder.tensors["text_model.embeddings.token_embedding.weight"] = orig_embeddings