InvokeAI/invokeai/app/invocations/upscale.py

47 lines
1.7 KiB
Python
Raw Normal View History

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union
2023-03-03 06:02:00 +00:00
from pydantic import Field
2023-03-03 06:02:00 +00:00
2023-04-04 03:08:42 +00:00
from invokeai.app.datatypes.image import ImageField, ImageType
from ..services.invocation_services import InvocationServices
2023-03-03 06:02:00 +00:00
from .baseinvocation import BaseInvocation, InvocationContext
2023-04-04 03:08:42 +00:00
from .image import ImageOutput
class UpscaleInvocation(BaseInvocation):
"""Upscales an image."""
#fmt: off
2023-03-03 06:02:00 +00:00
type: Literal["upscale"] = "upscale"
# Inputs
2023-03-03 06:02:00 +00:00
image: Union[ImageField, None] = Field(description="The input image", default=None)
strength: float = Field(default=0.75, gt=0, le=1, description="The strength")
level: Literal[2, 4] = Field(default=2, description="The upscale level")
#fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput:
2023-03-03 06:02:00 +00:00
image = context.services.images.get(
self.image.image_type, self.image.image_name
)
2023-03-11 22:00:00 +00:00
results = context.services.restoration.upscale_and_reconstruct(
2023-03-03 06:02:00 +00:00
image_list=[[image, 0]],
upscale=(self.level, self.strength),
strength=0.0, # GFPGAN strength
save_original=False,
image_callback=None,
)
# Results are image and seed, unwrap for now
# TODO: can this return multiple results?
image_type = ImageType.RESULT
2023-03-03 06:02:00 +00:00
image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id
)
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput(
2023-03-03 06:02:00 +00:00
image=ImageField(image_type=image_type, image_name=image_name)
)