InvokeAI/invokeai/app/services/batch_manager.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

136 lines
4.8 KiB
Python
Raw Normal View History

2023-07-31 19:45:35 +00:00
import networkx as nx
import copy
from abc import ABC, abstractmethod
from itertools import product
2023-07-31 19:45:35 +00:00
from pydantic import BaseModel, Field
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.graph import Graph, GraphExecutionState
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.batch_manager_storage import (
BatchProcessStorageBase,
Batch,
BatchProcess,
BatchSession,
BatchSessionChanges,
)
2023-07-31 19:45:35 +00:00
class BatchManagerBase(ABC):
@abstractmethod
2023-08-01 20:41:40 +00:00
def start(self, invoker: Invoker):
2023-07-31 19:45:35 +00:00
pass
@abstractmethod
def create_batch_process(self, batches: list[Batch], graph: Graph) -> str:
pass
@abstractmethod
def run_batch_process(self, batch_id: str):
2023-07-31 19:45:35 +00:00
pass
@abstractmethod
2023-08-01 20:41:40 +00:00
def cancel_batch_process(self, batch_process_id: str):
2023-07-31 19:45:35 +00:00
pass
class BatchManager(BatchManagerBase):
"""Responsible for managing currently running and scheduled batch jobs"""
2023-08-01 20:41:40 +00:00
2023-07-31 19:45:35 +00:00
__invoker: Invoker
__batches: list[BatchProcess]
__batch_process_storage: BatchProcessStorageBase
def __init__(self, batch_process_storage: BatchProcessStorageBase) -> None:
super().__init__()
self.__batch_process_storage = batch_process_storage
2023-07-31 19:45:35 +00:00
def start(self, invoker: Invoker) -> None:
2023-07-31 19:45:35 +00:00
# if we do want multithreading at some point, we could make this configurable
self.__invoker = invoker
self.__batches = list()
2023-08-01 20:41:40 +00:00
local_handler.register(event_name=EventServiceBase.session_event, _func=self.on_event)
2023-07-31 19:45:35 +00:00
async def on_event(self, event: Event):
event_name = event[1]["event"]
match event_name:
case "graph_execution_state_complete":
await self.process(event, False)
2023-07-31 19:45:35 +00:00
case "invocation_error":
await self.process(event, True)
2023-07-31 19:45:35 +00:00
return event
2023-08-01 20:41:40 +00:00
async def process(self, event: Event, err: bool):
2023-07-31 19:45:35 +00:00
data = event[1]["data"]
batch_session = self.__batch_process_storage.get_session(data["graph_execution_state_id"])
if not batch_session:
2023-07-31 19:45:35 +00:00
return
updateSession = BatchSessionChanges(
state='error' if err else 'completed'
)
batch_session = self.__batch_process_storage.update_session_state(
batch_session.batch_id,
batch_session.session_id,
updateSession,
)
self.run_batch_process(batch_session.batch_id)
2023-08-01 20:41:40 +00:00
def _create_batch_session(self, batch_process: BatchProcess, batch_indices: list[int]) -> GraphExecutionState:
2023-07-31 19:45:35 +00:00
graph = copy.deepcopy(batch_process.graph)
batches = batch_process.batches
g = graph.nx_graph_flat()
sorted_nodes = nx.topological_sort(g)
for npath in sorted_nodes:
node = graph.get_node(npath)
2023-08-01 20:41:40 +00:00
(index, batch) = next(((i, b) for i, b in enumerate(batches) if b.node_id in node.id), (None, None))
2023-07-31 19:45:35 +00:00
if batch:
batch_index = batch_indices[index]
2023-07-31 19:45:35 +00:00
datum = batch.data[batch_index]
for key in datum:
node.__dict__[key] = datum[key]
graph.update_node(npath, node)
2023-07-31 19:45:35 +00:00
2023-08-01 20:41:40 +00:00
return GraphExecutionState(graph=graph)
2023-07-31 19:45:35 +00:00
def run_batch_process(self, batch_id: str):
created_session = self.__batch_process_storage.get_created_session(batch_id)
ges = self.__invoker.services.graph_execution_manager.get(created_session.session_id)
self.__invoker.invoke(ges, invoke_all=True)
def _valid_batch_config(self, batch_process: BatchProcess) -> bool:
return True
def create_batch_process(self, batches: list[Batch], graph: Graph) -> str:
2023-07-31 19:45:35 +00:00
batch_process = BatchProcess(
2023-08-01 20:41:40 +00:00
batches=batches,
graph=graph,
2023-07-31 19:45:35 +00:00
)
if not self._valid_batch_config(batch_process):
return None
batch_process = self.__batch_process_storage.save(batch_process)
self._create_sessions(batch_process)
return batch_process.batch_id
def _create_sessions(self, batch_process: BatchProcess):
batch_indices = list()
for batch in batch_process.batches:
batch_indices.append(list(range(len(batch.data))))
all_batch_indices = product(*batch_indices)
for bi in all_batch_indices:
ges = self._create_batch_session(batch_process, bi)
self.__invoker.services.graph_execution_manager.set(ges)
batch_session = BatchSession(
batch_id=batch_process.batch_id,
session_id=ges.id,
state="created"
)
self.__batch_process_storage.create_session(batch_session)
2023-07-31 19:45:35 +00:00
2023-08-01 20:41:40 +00:00
def cancel_batch_process(self, batch_process_id: str):
2023-07-31 19:45:35 +00:00
self.__batches = [batch for batch in self.__batches if batch.id != batch_process_id]