2023-05-04 05:20:30 +00:00
# Copyright (c) 2023 Lincoln Stein (https://github.com/lstein)
''' Invokeai configuration system.
Arguments and fields are taken from the pydantic definition of the
model . Defaults can be set by creating a yaml configuration file that
has top - level keys corresponding to an invocation name , a command , or
" globals " for global values such as ` xformers_enabled ` . Currently
graphs cannot be configured this way , but their constituents can be .
[ file : invokeai . yaml ]
globals :
nsfw_checker : False
max_loaded_models : 5
txt2img :
steps : 20
scheduler : k_heun
width : 768
img2img :
width : 1024
height : 1024
The default name of the configuration file is ` invokeai . yaml ` , located
in INVOKEAI_ROOT . You can use any OmegaConf dictionary by passing it
to the config object at initialization time :
omegaconf = OmegaConf . load ( ' /tmp/init.yaml ' )
conf = InvokeAIAppConfig ( conf = omegaconf )
By default , InvokeAIAppConfig will parse the contents of argv at
initialization time . You may pass a list of strings in the optional
` argv ` argument to use instead of the system argv :
conf = InvokeAIAppConfig ( arg = [ ' --xformers_enabled ' ] )
It is also possible to set a value at initialization time . This value
has highest priority .
conf = InvokeAIAppConfig ( xformers_enabled = True )
Any setting can be overwritten by setting an environment variable of
form : " INVOKEAI_<command>_<value> " , as in :
export INVOKEAI_txt2img_steps = 30
Order of precedence ( from highest ) :
1 ) initialization options
2 ) command line options
3 ) environment variable options
4 ) config file options
5 ) pydantic defaults
Typical usage :
from invokeai . app . services . config import InvokeAIAppConfig
from invokeai . invocations . generate import TextToImageInvocation
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig ( )
print ( conf . nsfw_checker )
# get the text2image invocation and print its step value
text2image = TextToImageInvocation ( )
print ( text2image . steps )
Computed properties :
The InvokeAIAppConfig object has a series of properties that
resolve paths relative to the runtime root directory . They each return
a Path object :
root_path - path to InvokeAI root
output_path - path to default outputs directory
model_conf_path - path to models . yaml
conf - alias for the above
embedding_path - path to the embeddings directory
lora_path - path to the LoRA directory
In most cases , you will want to create a single InvokeAIAppConfig
object for the entire application . The get_invokeai_config ( ) function
does this :
config = get_invokeai_config ( )
print ( config . root )
'''
import argparse
import os
import sys
from argparse import ArgumentParser
from omegaconf import OmegaConf , DictConfig
from pathlib import Path
from pydantic import BaseSettings , Field , parse_obj_as
from typing import Any , ClassVar , Dict , List , Literal , Type , Union , get_origin , get_type_hints , get_args
INIT_FILE = Path ( ' invokeai.yaml ' )
LEGACY_INIT_FILE = Path ( ' invokeai.init ' )
# This global stores a singleton InvokeAIAppConfig configuration object
global_config = None
class InvokeAISettings ( BaseSettings ) :
'''
Runtime configuration settings in which default values are
read from an omegaconf . yaml file .
'''
initconf : ClassVar [ DictConfig ] = None
argparse_groups : ClassVar [ Dict ] = { }
def parse_args ( self , argv : list = sys . argv [ 1 : ] ) :
parser = self . get_parser ( )
opt , _ = parser . parse_known_args ( argv )
for name in self . __fields__ :
if name not in self . _excluded ( ) :
setattr ( self , name , getattr ( opt , name ) )
@classmethod
def add_parser_arguments ( cls , parser ) :
env_prefix = cls . Config . env_prefix if hasattr ( cls . Config , ' env_prefix ' ) else ' INVOKEAI_ '
if ' type ' in get_type_hints ( cls ) :
default_settings_stanza = get_args ( get_type_hints ( cls ) [ ' type ' ] ) [ 0 ]
else :
default_settings_stanza = ' globals '
initconf = cls . initconf . get ( default_settings_stanza ) if cls . initconf and default_settings_stanza in cls . initconf else None
fields = cls . __fields__
cls . argparse_groups = { }
for name , field in fields . items ( ) :
if name not in cls . _excluded ( ) :
env_name = env_prefix + f ' { cls . cmd_name ( ) } _ { name } '
if initconf and name in initconf :
field . default = initconf . get ( name )
if env_name in os . environ :
field . default = os . environ [ env_name ]
cls . add_field_argument ( parser , name , field )
@classmethod
def cmd_name ( self , command_field : str = ' type ' ) - > str :
hints = get_type_hints ( self )
if command_field in hints :
return get_args ( hints [ command_field ] ) [ 0 ]
else :
return ' globals '
@classmethod
def get_parser ( cls ) - > ArgumentParser :
parser = ArgumentParser (
prog = cls . cmd_name ( ) ,
description = cls . __doc__ ,
)
cls . add_parser_arguments ( parser )
return parser
@classmethod
def add_subparser ( cls , parser : argparse . ArgumentParser ) :
parser . add_parser ( cls . cmd_name ( ) , help = cls . __doc__ )
@classmethod
def _excluded ( self ) - > List [ str ] :
return [ ' type ' , ' initconf ' ]
class Config :
env_file_encoding = ' utf-8 '
arbitrary_types_allowed = True
env_prefix = ' INVOKEAI_ '
case_sensitive = True
@classmethod
def customise_sources (
cls ,
init_settings ,
env_settings ,
file_secret_settings ,
) :
return (
init_settings ,
cls . _omegaconf_settings_source ,
env_settings ,
file_secret_settings ,
)
@classmethod
def _omegaconf_settings_source ( cls , settings : BaseSettings ) - > dict [ str , Any ] :
if initconf := InvokeAISettings . initconf :
return initconf . get ( settings . cmd_name ( ) , { } )
else :
return { }
@classmethod
def add_field_argument ( cls , command_parser , name : str , field , default_override = None ) :
default = default_override if default_override is not None else field . default if field . default_factory is None else field . default_factory ( )
if category := field . field_info . extra . get ( " category " ) :
if category not in cls . argparse_groups :
cls . argparse_groups [ category ] = command_parser . add_argument_group ( category )
argparse_group = cls . argparse_groups [ category ]
else :
argparse_group = command_parser
if get_origin ( field . type_ ) == Literal :
allowed_values = get_args ( field . type_ )
allowed_types = set ( )
for val in allowed_values :
allowed_types . add ( type ( val ) )
allowed_types_list = list ( allowed_types )
field_type = allowed_types_list [ 0 ] if len ( allowed_types ) == 1 else Union [ allowed_types_list ] # type: ignore
argparse_group . add_argument (
f " -- { name } " ,
dest = name ,
type = field_type ,
default = default ,
choices = allowed_values ,
help = field . field_info . description ,
)
else :
argparse_group . add_argument (
f " -- { name } " ,
dest = name ,
type = field . type_ ,
default = default ,
action = argparse . BooleanOptionalAction if field . type_ == bool else ' store ' ,
help = field . field_info . description ,
)
def _find_root ( ) - > Path :
if os . environ . get ( " INVOKEAI_ROOT " ) :
root = Path ( os . environ . get ( " INVOKEAI_ROOT " ) ) . resolve ( )
elif (
os . environ . get ( " VIRTUAL_ENV " )
and ( Path ( os . environ . get ( " VIRTUAL_ENV " ) , " .. " , INIT_FILE ) . exists ( )
or
Path ( os . environ . get ( " VIRTUAL_ENV " ) , " .. " , LEGACY_INIT_FILE ) . exists ( )
)
) :
root = Path ( os . environ . get ( " VIRTUAL_ENV " ) , " .. " ) . resolve ( )
else :
root = Path ( " ~/invokeai " ) . expanduser ( ) . resolve ( )
return root
class InvokeAIAppConfig ( InvokeAISettings ) :
'''
Application - wide settings .
'''
#fmt: off
type : Literal [ " globals " ] = " globals "
root : Path = Field ( default = _find_root ( ) , description = ' InvokeAI runtime root directory ' , category = ' Paths ' )
conf_path : Path = Field ( default = ' configs/models.yaml ' , description = ' Path to models definition file ' , category = ' Paths ' )
legacy_conf_dir : Path = Field ( default = ' configs/stable-diffusion ' , description = ' Path to directory of legacy checkpoint config files ' , category = ' Paths ' )
model : str = Field ( default = ' stable-diffusion-1.5 ' , description = ' Initial model name ' , category = ' Models ' )
outdir : Path = Field ( default = ' outputs ' , description = ' Default folder for output images ' , category = ' Paths ' )
embedding_dir : Path = Field ( default = ' embeddings ' , description = ' Path to InvokeAI textual inversion aembeddings directory ' , category = ' Paths ' )
lora_dir : Path = Field ( default = ' loras ' , description = ' Path to InvokeAI LoRA model directory ' , category = ' Paths ' )
autoconvert_dir : Path = Field ( default = None , description = ' Path to a directory of ckpt files to be converted into diffusers and imported on startup. ' , category = ' Paths ' )
gfpgan_model_dir : Path = Field ( default = " ./models/gfpgan/GFPGANv1.4.pth " , description = ' Path to GFPGAN models directory. ' , category = ' Paths ' )
embeddings : bool = Field ( default = True , description = ' Load contents of embeddings directory ' , category = ' Models ' )
xformers_enabled : bool = Field ( default = True , description = " Enable/disable memory-efficient attention " , category = ' Memory/Performance ' )
sequential_guidance : bool = Field ( default = False , description = " Whether to calculate guidance in serial instead of in parallel, lowering memory requirements " , category = ' Memory/Performance ' )
precision : Literal [ tuple ( [ ' auto ' , ' float16 ' , ' float32 ' , ' autocast ' ] ) ] = Field ( default = ' float16 ' , description = ' Floating point precision ' , category = ' Memory/Performance ' )
max_loaded_models : int = Field ( default = 2 , gt = 0 , description = " Maximum number of models to keep in memory for rapid switching " , category = ' Memory/Performance ' )
always_use_cpu : bool = Field ( default = False , description = " If true, use the CPU for rendering even if a GPU is available. " , category = ' Memory/Performance ' )
free_gpu_mem : bool = Field ( default = False , description = " If true, purge model from GPU after each generation. " , category = ' Memory/Performance ' )
nsfw_checker : bool = Field ( default = True , description = " Enable/disable the NSFW checker " , category = ' Features ' )
restore : bool = Field ( default = True , description = " Enable/disable face restoration code " , category = ' Features ' )
esrgan : bool = Field ( default = True , description = " Enable/disable upscaling code " , category = ' Features ' )
patchmatch : bool = Field ( default = True , description = " Enable/disable patchmatch inpaint code " , category = ' Features ' )
internet_available : bool = Field ( default = True , description = " If true, attempt to download models on the fly; otherwise only use local models " , category = ' Features ' )
log_tokenization : bool = Field ( default = False , description = " Enable logging of parsed prompt tokens. " , category = ' Features ' )
2023-05-17 04:18:19 +00:00
allow_origins : List = Field ( default = [ ] , description = " Allowed CORS origins " , category = ' Cross-Origin Resource Sharing ' )
allow_credentials : bool = Field ( default = True , description = " Allow CORS credentials " , category = ' Cross-Origin Resource Sharing ' )
allow_methods : List = Field ( default = [ " * " ] , description = " Methods allowed for CORS " , category = ' Cross-Origin Resource Sharing ' )
allow_headers : List = Field ( default = [ " * " ] , description = " Headers allowed for CORS " , category = ' Cross-Origin Resource Sharing ' )
host : str = Field ( default = " 127.0.0.1 " , description = " IP address to bind to " , category = ' Web Server ' )
port : int = Field ( default = 9090 , description = " Port to bind to " , category = ' Web Server ' )
2023-05-04 05:20:30 +00:00
#fmt: on
def __init__ ( self , conf : DictConfig = None , argv : List [ str ] = None , * * kwargs ) :
'''
Initialize InvokeAIAppconfig .
: param conf : alternate Omegaconf dictionary object
: param argv : aternate sys . argv list
: param * * kwargs : attributes to initialize with
'''
super ( ) . __init__ ( * * kwargs )
# Set the runtime root directory. We parse command-line switches here
# in order to pick up the --root_dir option.
self . parse_args ( argv )
if not conf :
try :
conf = OmegaConf . load ( self . root_dir / INIT_FILE )
except :
pass
InvokeAISettings . initconf = conf
# parse args again in order to pick up settings in configuration file
self . parse_args ( argv )
# restore initialization values
hints = get_type_hints ( self )
for k in kwargs :
setattr ( self , k , parse_obj_as ( hints [ k ] , kwargs [ k ] ) )
@property
def root_path ( self ) - > Path :
'''
Path to the runtime root directory
'''
if self . root :
return Path ( self . root ) . expanduser ( )
else :
return self . find_root ( )
@property
def root_dir ( self ) - > Path :
'''
Alias for above .
'''
return self . root_path
def _resolve ( self , partial_path : Path ) - > Path :
return ( self . root_path / partial_path ) . resolve ( )
@property
def output_path ( self ) - > Path :
'''
Path to defaults outputs directory .
'''
return self . _resolve ( self . outdir )
@property
def model_conf_path ( self ) - > Path :
'''
Path to models configuration file .
'''
return self . _resolve ( self . conf_path )
@property
def legacy_conf_path ( self ) - > Path :
'''
Path to directory of legacy configuration files ( e . g . v1 - inference . yaml )
'''
return self . _resolve ( self . legacy_conf_dir )
@property
def cache_dir ( self ) - > Path :
'''
Path to the global cache directory for HuggingFace hub - managed models
'''
return self . models_dir / " hub "
@property
def models_dir ( self ) - > Path :
'''
Path to the models directory
'''
return self . _resolve ( " models " )
@property
def embedding_path ( self ) - > Path :
'''
Path to the textual inversion embeddings directory .
'''
return self . _resolve ( self . embedding_dir ) if self . embedding_dir else None
@property
def lora_path ( self ) - > Path :
'''
Path to the LoRA models directory .
'''
return self . _resolve ( self . lora_dir ) if self . lora_dir else None
@property
def autoconvert_path ( self ) - > Path :
'''
Path to the directory containing models to be imported automatically at startup .
'''
return self . _resolve ( self . autoconvert_dir ) if self . autoconvert_dir else None
@property
def gfpgan_model_path ( self ) - > Path :
'''
Path to the GFPGAN model .
'''
return self . _resolve ( self . gfpgan_model_dir ) if self . gfpgan_model_dir else None
# the following methods support legacy calls leftover from the Globals era
@property
def full_precision ( self ) - > bool :
""" Return true if precision set to float32 """
return self . precision == ' float32 '
@property
def disable_xformers ( self ) - > bool :
""" Return true if xformers_enabled is false """
return not self . xformers_enabled
2023-05-16 05:50:01 +00:00
@property
def try_patchmatch ( self ) - > bool :
""" Return true if patchmatch true """
return self . patchmatch
2023-05-04 05:20:30 +00:00
@staticmethod
def find_root ( ) - > Path :
'''
Choose the runtime root directory when not specified on command line or
init file .
'''
return _find_root ( )
def get_invokeai_config ( cls : Type [ InvokeAISettings ] = InvokeAIAppConfig ) - > InvokeAISettings :
'''
This returns a singleton InvokeAIAppConfig configuration object .
'''
global global_config
if global_config is None or type ( global_config ) != cls :
global_config = cls ( )
return global_config